File size: 4,883 Bytes
0ad74ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
from __future__ import annotations

import base64
from io import BytesIO
from pathlib import Path
from typing import Literal, cast

import numpy as np
import PIL.Image
from gradio_client.utils import get_mimetype
from PIL import ImageOps

from gradio import processing_utils

PIL.Image.init()  # fixes https://github.com/gradio-app/gradio/issues/2843 (remove when requiring Pillow 9.4+)


def format_image(
    im: PIL.Image.Image | None,
    type: Literal["numpy", "pil", "filepath"],
    cache_dir: str,
    name: str = "image",
    format: str = "webp",
) -> np.ndarray | PIL.Image.Image | str | None:
    """Helper method to format an image based on self.type"""
    if im is None:
        return im
    if type == "pil":
        return im
    elif type == "numpy":
        return np.array(im)
    elif type == "filepath":
        try:
            path = processing_utils.save_pil_to_cache(
                im, cache_dir=cache_dir, name=name, format=format
            )
        # Catch error if format is not supported by PIL
        except (KeyError, ValueError):
            path = processing_utils.save_pil_to_cache(
                im,
                cache_dir=cache_dir,
                name=name,
                format="png",  # type: ignore
            )
        return path
    else:
        raise ValueError(
            "Unknown type: "
            + str(type)
            + ". Please choose from: 'numpy', 'pil', 'filepath'."
        )


def save_image(
    y: np.ndarray | PIL.Image.Image | str | Path, cache_dir: str, format: str = "webp"
):
    if isinstance(y, np.ndarray):
        path = processing_utils.save_img_array_to_cache(
            y, cache_dir=cache_dir, format=format
        )
    elif isinstance(y, PIL.Image.Image):
        try:
            path = processing_utils.save_pil_to_cache(
                y, cache_dir=cache_dir, format=format
            )
        # Catch error if format is not supported by PIL
        except (KeyError, ValueError):
            path = processing_utils.save_pil_to_cache(
                y, cache_dir=cache_dir, format="png"
            )
    elif isinstance(y, Path):
        path = str(y)
    elif isinstance(y, str):
        path = y
    else:
        raise ValueError(
            "Cannot process this value as an Image, it is of type: " + str(type(y))
        )

    return path


def crop_scale(img: PIL.Image.Image, final_width: int, final_height: int):
    original_width, original_height = img.size
    target_aspect_ratio = final_width / final_height

    if original_width / original_height > target_aspect_ratio:
        crop_height = original_height
        crop_width = crop_height * target_aspect_ratio
    else:
        crop_width = original_width
        crop_height = crop_width / target_aspect_ratio

    left = (original_width - crop_width) / 2
    top = (original_height - crop_height) / 2

    img_cropped = img.crop(
        (int(left), int(top), int(left + crop_width), int(top + crop_height))
    )

    img_resized = img_cropped.resize((final_width, final_height))

    return img_resized


def decode_base64_to_image(encoding: str) -> PIL.Image.Image:
    image_encoded = processing_utils.extract_base64_data(encoding)
    img = PIL.Image.open(BytesIO(base64.b64decode(image_encoded)))
    try:
        if hasattr(ImageOps, "exif_transpose"):
            img = ImageOps.exif_transpose(img)
    except Exception:
        print(
            "Failed to transpose image %s based on EXIF data.",
            img,
        )
    return cast(PIL.Image.Image, img)


def decode_base64_to_image_array(encoding: str) -> np.ndarray:
    img = decode_base64_to_image(encoding)
    return np.asarray(img)


def decode_base64_to_file(encoding: str, cache_dir: str, format: str = "webp") -> str:
    img = decode_base64_to_image(encoding)
    return save_image(img, cache_dir, format)


def encode_image_array_to_base64(image_array: np.ndarray) -> str:
    with BytesIO() as output_bytes:
        pil_image = PIL.Image.fromarray(
            processing_utils._convert(image_array, np.uint8, force_copy=False)
        )
        pil_image.save(output_bytes, "JPEG")
        bytes_data = output_bytes.getvalue()
    base64_str = str(base64.b64encode(bytes_data), "utf-8")
    return "data:image/jpeg;base64," + base64_str


def encode_image_to_base64(image: PIL.Image.Image) -> str:
    with BytesIO() as output_bytes:
        image.save(output_bytes, "JPEG")
        bytes_data = output_bytes.getvalue()
    base64_str = str(base64.b64encode(bytes_data), "utf-8")
    return "data:image/jpeg;base64," + base64_str


def encode_image_file_to_base64(image_file: str | Path) -> str:
    mime_type = get_mimetype(str(image_file))
    with open(image_file, "rb") as f:
        bytes_data = f.read()
    base64_str = str(base64.b64encode(bytes_data), "utf-8")
    return f"data:{mime_type};base64," + base64_str