File size: 4,896 Bytes
0ad74ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
from pathlib import Path

import numpy as np
import PIL

import gradio as gr
from gradio.components.gallery import GalleryImage
from gradio.data_classes import FileData


class TestGallery:
    def test_postprocess(self):
        url = "https://huggingface.co/Norod78/SDXL-VintageMagStyle-Lora/resolve/main/Examples/00015-20230906102032-7778-Wonderwoman VintageMagStyle   _lora_SDXL-VintageMagStyle-Lora_1_, Very detailed, clean, high quality, sharp image.jpg"
        gallery = gr.Gallery([url])
        assert gallery.get_config()["value"] == [
            {
                "image": {
                    "path": url,
                    "orig_name": "00015-20230906102032-7778-Wonderwoman VintageMagStyle   _lora_SDXL-VintageMagStyle-Lora_1_, Very detailed, clean, high quality, sharp image.jpg",
                    "mime_type": "image/jpeg",
                    "size": None,
                    "url": url,
                    "is_stream": False,
                    "meta": {"_type": "gradio.FileData"},
                },
                "caption": None,
            }
        ]

    def test_gallery(self):
        gallery = gr.Gallery()
        Path(Path(__file__).parent, "test_files")

        postprocessed_gallery = gallery.postprocess(
            [
                (str(Path("test/test_files/foo.png")), "foo_caption"),
                (Path("test/test_files/bar.png"), "bar_caption"),
                str(Path("test/test_files/baz.png")),
                Path("test/test_files/qux.png"),
            ]
        ).model_dump()

        # Using str(Path(...)) to ensure that the test passes on all platforms
        assert postprocessed_gallery == [
            {
                "image": {
                    "path": str(Path("test") / "test_files" / "foo.png"),
                    "orig_name": "foo.png",
                    "mime_type": "image/png",
                    "size": None,
                    "url": None,
                    "is_stream": False,
                    "meta": {"_type": "gradio.FileData"},
                },
                "caption": "foo_caption",
            },
            {
                "image": {
                    "path": str(Path("test") / "test_files" / "bar.png"),
                    "orig_name": "bar.png",
                    "mime_type": "image/png",
                    "size": None,
                    "url": None,
                    "is_stream": False,
                    "meta": {"_type": "gradio.FileData"},
                },
                "caption": "bar_caption",
            },
            {
                "image": {
                    "path": str(Path("test") / "test_files" / "baz.png"),
                    "orig_name": "baz.png",
                    "mime_type": "image/png",
                    "size": None,
                    "url": None,
                    "is_stream": False,
                    "meta": {"_type": "gradio.FileData"},
                },
                "caption": None,
            },
            {
                "image": {
                    "path": str(Path("test") / "test_files" / "qux.png"),
                    "orig_name": "qux.png",
                    "mime_type": "image/png",
                    "size": None,
                    "url": None,
                    "is_stream": False,
                    "meta": {"_type": "gradio.FileData"},
                },
                "caption": None,
            },
        ]

    def test_gallery_preprocess(self):
        from gradio.components.gallery import GalleryData, GalleryImage

        gallery = gr.Gallery()
        img = GalleryImage(image=FileData(path="test/test_files/bus.png"))
        data = GalleryData(root=[img])

        assert (preprocessed := gallery.preprocess(data))
        assert preprocessed[0][0] == "test/test_files/bus.png"

        gallery = gr.Gallery(type="numpy")
        assert (preprocessed := gallery.preprocess(data))
        assert (
            preprocessed[0][0] == np.array(PIL.Image.open("test/test_files/bus.png"))  # type: ignore
        ).all()  # type: ignore

        gallery = gr.Gallery(type="pil")
        assert (preprocess := gallery.preprocess(data))
        assert preprocess[0][0] == PIL.Image.open(  # type: ignore
            "test/test_files/bus.png"
        )

        img_captions = GalleryImage(
            image=FileData(path="test/test_files/bus.png"), caption="bus"
        )
        data = GalleryData(root=[img_captions])
        assert (preprocess := gr.Gallery().preprocess(data))
        assert preprocess[0] == ("test/test_files/bus.png", "bus")

    def test_gallery_format(self):
        gallery = gr.Gallery(format="jpeg")
        output = gallery.postprocess(
            [np.random.randint(0, 255, (100, 100, 3), dtype=np.uint8)]
        )
        if type(output.root[0]) == GalleryImage:
            assert output.root[0].image.path.endswith(".jpeg")