my_gradio / gradio /blocks.py
xray918's picture
Upload folder using huggingface_hub
0ad74ed verified
raw
history blame
132 kB
from __future__ import annotations
import copy
import dataclasses
import hashlib
import inspect
import json
import os
import random
import secrets
import string
import sys
import threading
import time
import warnings
import webbrowser
from collections import defaultdict
from collections.abc import AsyncIterator, Callable, Coroutine, Sequence, Set
from pathlib import Path
from types import ModuleType
from typing import (
TYPE_CHECKING,
Any,
Literal,
cast,
)
from urllib.parse import urlparse, urlunparse
import anyio
import fastapi
import httpx
from anyio import CapacityLimiter
from gradio_client import utils as client_utils
from gradio_client.documentation import document
from gradio import (
analytics,
components,
networking,
processing_utils,
queueing,
routes,
strings,
themes,
utils,
wasm_utils,
)
from gradio.blocks_events import BlocksEvents, BlocksMeta
from gradio.context import (
Context,
LocalContext,
get_blocks_context,
get_render_context,
set_render_context,
)
from gradio.data_classes import (
BlocksConfigDict,
DeveloperPath,
FileData,
GradioModel,
GradioRootModel,
)
from gradio.events import (
EventData,
EventListener,
EventListenerMethod,
)
from gradio.exceptions import (
ChecksumMismatchError,
DuplicateBlockError,
InvalidApiNameError,
InvalidComponentError,
)
from gradio.helpers import create_tracker, skip, special_args
from gradio.node_server import start_node_server
from gradio.route_utils import API_PREFIX, MediaStream
from gradio.state_holder import SessionState, StateHolder
from gradio.themes import Default as DefaultTheme
from gradio.themes import ThemeClass as Theme
from gradio.tunneling import (
BINARY_FILENAME,
BINARY_FOLDER,
BINARY_PATH,
BINARY_URL,
CURRENT_TUNNELS,
)
from gradio.utils import (
TupleNoPrint,
check_function_inputs_match,
component_or_layout_class,
get_cancelled_fn_indices,
get_node_path,
get_package_version,
get_upload_folder,
)
try:
import spaces # type: ignore
except Exception:
spaces = None
if TYPE_CHECKING: # Only import for type checking (is False at runtime).
from gradio.components.base import Component
from gradio.renderable import Renderable
BUILT_IN_THEMES: dict[str, Theme] = {
t.name: t
for t in [
themes.Base(),
themes.Default(),
themes.Monochrome(),
themes.Soft(),
themes.Glass(),
themes.Origin(),
themes.Citrus(),
themes.Ocean(),
]
}
class Block:
def __init__(
self,
*,
elem_id: str | None = None,
elem_classes: list[str] | str | None = None,
render: bool = True,
key: int | str | None = None,
visible: bool = True,
proxy_url: str | None = None,
):
self._id = Context.id
Context.id += 1
self.visible = visible
self.elem_id = elem_id
self.elem_classes = (
[elem_classes] if isinstance(elem_classes, str) else elem_classes
)
self.proxy_url = proxy_url
self.share_token = secrets.token_urlsafe(32)
self.parent: BlockContext | None = None
self.rendered_in: Renderable | None = None
self.is_rendered: bool = False
self._constructor_args: list[dict]
self.state_session_capacity = 10000
self.temp_files: set[str] = set()
self.GRADIO_CACHE = get_upload_folder()
self.key = key
# Keep tracks of files that should not be deleted when the delete_cache parmameter is set
# These files are the default value of the component and files that are used in examples
self.keep_in_cache = set()
self.has_launched = False
if render:
self.render()
@property
def stateful(self) -> bool:
return False
@property
def skip_api(self) -> bool:
return False
@property
def constructor_args(self) -> dict[str, Any]:
"""Get the arguments passed to the component's initializer.
Only set classes whose metaclass is ComponentMeta
"""
# the _constructor_args list is appended based on the mro of the class
# so the first entry is for the bottom of the hierarchy
return self._constructor_args[0] if self._constructor_args else {}
@property
def events(
self,
) -> list[EventListener]:
return getattr(self, "EVENTS", [])
def render(self):
"""
Adds self into appropriate BlockContext
"""
root_context = get_blocks_context()
render_context = get_render_context()
self.rendered_in = LocalContext.renderable.get()
if root_context is not None and self._id in root_context.blocks:
raise DuplicateBlockError(
f"A block with id: {self._id} has already been rendered in the current Blocks."
)
if render_context is not None:
render_context.add(self)
if root_context is not None:
root_context.blocks[self._id] = self
self.is_rendered = True
if isinstance(self, components.Component):
root_context.root_block.temp_file_sets.append(self.temp_files)
return self
def unrender(self):
"""
Removes self from BlockContext if it has been rendered (otherwise does nothing).
Removes self from the layout and collection of blocks, but does not delete any event triggers.
"""
root_context = get_blocks_context()
render_context = get_render_context()
if render_context is not None:
try:
render_context.children.remove(self)
except ValueError:
pass
if root_context is not None:
try:
del root_context.blocks[self._id]
self.is_rendered = False
except KeyError:
pass
return self
def get_block_name(self) -> str:
"""
Gets block's class name. If it is template component it gets the parent's class name.
This is used to identify the Svelte file to use in the frontend. Override this method
if a component should use a different Svelte file than the default naming convention.
"""
return (
self.__class__.__base__.__name__.lower() # type: ignore
if hasattr(self, "is_template")
else self.__class__.__name__.lower()
)
def get_block_class(self) -> str:
"""
Gets block's class name. If it is template component it gets the parent's class name.
Very similar to the get_block_name method, but this method is used to reconstruct a
Gradio app that is loaded from a Space using gr.load(). This should generally
NOT be overridden.
"""
return (
self.__class__.__base__.__name__.lower() # type: ignore
if hasattr(self, "is_template")
else self.__class__.__name__.lower()
)
def get_expected_parent(self) -> type[BlockContext] | None:
return None
def get_config(self):
config = {}
signature = inspect.signature(self.__class__.__init__)
for parameter in signature.parameters.values():
if hasattr(self, parameter.name):
value = getattr(self, parameter.name)
if dataclasses.is_dataclass(value):
value = dataclasses.asdict(value) # type: ignore
config[parameter.name] = value
for e in self.events:
to_add = e.config_data()
if to_add:
config = {**to_add, **config}
config.pop("render", None)
config = {**config, "proxy_url": self.proxy_url, "name": self.get_block_class()}
if self.rendered_in is not None:
config["rendered_in"] = self.rendered_in._id
for event_attribute in ["_selectable", "_undoable", "_retryable", "likeable"]:
if (attributable := getattr(self, event_attribute, None)) is not None:
config[event_attribute] = attributable
return config
@classmethod
def recover_kwargs(
cls, props: dict[str, Any], additional_keys: list[str] | None = None
):
"""
Recovers kwargs from a dict of props.
"""
additional_keys = additional_keys or []
signature = inspect.signature(cls.__init__)
kwargs = {}
for parameter in signature.parameters.values():
if parameter.name in props and parameter.name not in additional_keys:
kwargs[parameter.name] = props[parameter.name]
return kwargs
async def async_move_resource_to_block_cache(
self, url_or_file_path: str | Path | None
) -> str | None:
"""Moves a file or downloads a file from a url to a block's cache directory, adds
to to the block's temp_files, and returns the path to the file in cache. This
ensures that the file is accessible to the Block and can be served to users.
This async version of the function is used when this is being called within
a FastAPI route, as this is not blocking.
"""
if url_or_file_path is None:
return None
if isinstance(url_or_file_path, Path):
url_or_file_path = str(url_or_file_path)
if client_utils.is_http_url_like(url_or_file_path):
temp_file_path = await processing_utils.async_ssrf_protected_download(
url_or_file_path, cache_dir=self.GRADIO_CACHE
)
self.temp_files.add(temp_file_path)
else:
url_or_file_path = str(utils.abspath(url_or_file_path))
if not utils.is_in_or_equal(url_or_file_path, self.GRADIO_CACHE):
try:
temp_file_path = processing_utils.save_file_to_cache(
url_or_file_path, cache_dir=self.GRADIO_CACHE
)
except FileNotFoundError:
# This can happen if when using gr.load() and the file is on a remote Space
# but the file is not the `value` of the component. For example, if the file
# is the `avatar_image` of the `Chatbot` component. In this case, we skip
# copying the file to the cache and just use the remote file path.
return url_or_file_path
else:
temp_file_path = url_or_file_path
self.temp_files.add(temp_file_path)
return temp_file_path
def move_resource_to_block_cache(
self, url_or_file_path: str | Path | None
) -> str | None:
"""Moves a file or downloads a file from a url to a block's cache directory, adds
to to the block's temp_files, and returns the path to the file in cache. This
ensures that the file is accessible to the Block and can be served to users.
This sync version of the function is used when this is being called outside of
a FastAPI route, e.g. when examples are being cached.
"""
if url_or_file_path is None:
return None
if isinstance(url_or_file_path, Path):
url_or_file_path = str(url_or_file_path)
if client_utils.is_http_url_like(url_or_file_path):
temp_file_path = processing_utils.save_url_to_cache(
url_or_file_path, cache_dir=self.GRADIO_CACHE
)
self.temp_files.add(temp_file_path)
else:
url_or_file_path = str(utils.abspath(url_or_file_path))
if not utils.is_in_or_equal(url_or_file_path, self.GRADIO_CACHE):
try:
temp_file_path = processing_utils.save_file_to_cache(
url_or_file_path, cache_dir=self.GRADIO_CACHE
)
except FileNotFoundError:
# This can happen if when using gr.load() and the file is on a remote Space
# but the file is not the `value` of the component. For example, if the file
# is the `avatar_image` of the `Chatbot` component. In this case, we skip
# copying the file to the cache and just use the remote file path.
return url_or_file_path
else:
temp_file_path = url_or_file_path
self.temp_files.add(temp_file_path)
return temp_file_path
def serve_static_file(
self, url_or_file_path: str | Path | dict | None
) -> dict | None:
"""If a file is a local file, moves it to the block's cache directory and returns
a FileData-type dictionary corresponding to the file. If the file is a URL, returns a
FileData-type dictionary corresponding to the URL. This ensures that the file is
accessible in the frontend and can be served to users.
Examples:
>>> block.serve_static_file("https://gradio.app/logo.png") -> {"path": "https://gradio.app/logo.png", "url": "https://gradio.app/logo.png"}
>>> block.serve_static_file("logo.png") -> {"path": "logo.png", "url": "/file=logo.png"}
>>> block.serve_static_file({"path": "logo.png", "url": "/file=logo.png"}) -> {"path": "logo.png", "url": "/file=logo.png"}
"""
if url_or_file_path is None:
return None
if isinstance(url_or_file_path, dict):
return url_or_file_path
if isinstance(url_or_file_path, Path):
url_or_file_path = str(url_or_file_path)
if client_utils.is_http_url_like(url_or_file_path):
return FileData(path=url_or_file_path, url=url_or_file_path).model_dump()
else:
data = {"path": url_or_file_path, "meta": {"_type": "gradio.FileData"}}
try:
return client_utils.synchronize_async(
processing_utils.async_move_files_to_cache, data, self
)
except AttributeError: # Can be raised if this function is called before the Block is fully initialized.
return data
class BlockContext(Block):
def __init__(
self,
elem_id: str | None = None,
elem_classes: list[str] | str | None = None,
visible: bool = True,
render: bool = True,
):
"""
Parameters:
elem_id: An optional string that is assigned as the id of this component in the HTML DOM. Can be used for targeting CSS styles.
elem_classes: An optional string or list of strings that are assigned as the class of this component in the HTML DOM. Can be used for targeting CSS styles.
visible: If False, this will be hidden but included in the Blocks config file (its visibility can later be updated).
render: If False, this will not be included in the Blocks config file at all.
"""
self.children: list[Block] = []
Block.__init__(
self,
elem_id=elem_id,
elem_classes=elem_classes,
visible=visible,
render=render,
)
TEMPLATE_DIR = DeveloperPath("./templates/")
FRONTEND_DIR = "../../frontend/"
@property
def skip_api(self):
return True
@classmethod
def get_component_class_id(cls) -> str:
module_name = cls.__module__
module_path = sys.modules[module_name].__file__
module_hash = hashlib.md5(f"{cls.__name__}_{module_path}".encode()).hexdigest()
return module_hash
@property
def component_class_id(self):
return self.get_component_class_id()
def add_child(self, child: Block):
self.children.append(child)
def __enter__(self):
render_context = get_render_context()
self.parent = render_context
set_render_context(self)
return self
def add(self, child: Block):
child.parent = self
self.children.append(child)
def fill_expected_parents(self):
root_context = get_blocks_context()
children = []
pseudo_parent = None
for child in self.children:
expected_parent = child.get_expected_parent()
if not expected_parent or isinstance(self, expected_parent):
pseudo_parent = None
children.append(child)
else:
if pseudo_parent is not None and isinstance(
pseudo_parent, expected_parent
):
pseudo_parent.add_child(child)
else:
pseudo_parent = expected_parent(render=False)
pseudo_parent.parent = self
children.append(pseudo_parent)
pseudo_parent.add_child(child)
if root_context:
root_context.blocks[pseudo_parent._id] = pseudo_parent
child.parent = pseudo_parent
self.children = children
def __exit__(self, exc_type: type[BaseException] | None = None, *args):
set_render_context(self.parent)
if exc_type is not None:
return
if getattr(self, "allow_expected_parents", True):
self.fill_expected_parents()
def postprocess(self, y):
"""
Any postprocessing needed to be performed on a block context.
"""
return y
class BlockFunction:
def __init__(
self,
fn: Callable | None,
inputs: Sequence[Component | BlockContext],
outputs: Sequence[Component | BlockContext],
preprocess: bool,
postprocess: bool,
inputs_as_dict: bool,
targets: list[tuple[int | None, str]],
_id: int,
batch: bool = False,
max_batch_size: int = 4,
concurrency_limit: int | None | Literal["default"] = "default",
concurrency_id: str | None = None,
tracks_progress: bool = False,
api_name: str | Literal[False] = False,
js: str | None = None,
show_progress: Literal["full", "minimal", "hidden"] = "full",
cancels: list[int] | None = None,
collects_event_data: bool = False,
trigger_after: int | None = None,
trigger_only_on_success: bool = False,
trigger_mode: Literal["always_last", "once", "multiple"] = "once",
queue: bool = True,
scroll_to_output: bool = False,
show_api: bool = True,
renderable: Renderable | None = None,
rendered_in: Renderable | None = None,
is_cancel_function: bool = False,
connection: Literal["stream", "sse"] = "sse",
time_limit: float | None = None,
stream_every: float = 0.5,
like_user_message: bool = False,
event_specific_args: list[str] | None = None,
):
self.fn = fn
self._id = _id
self.inputs = inputs
self.outputs = outputs
self.preprocess = preprocess
self.postprocess = postprocess
self.tracks_progress = tracks_progress
self.concurrency_limit: int | None | Literal["default"] = concurrency_limit
self.concurrency_id = concurrency_id or str(id(fn))
self.batch = batch
self.max_batch_size = max_batch_size
self.total_runtime = 0
self.total_runs = 0
self.inputs_as_dict = inputs_as_dict
self.targets = targets
self.name = getattr(fn, "__name__", "fn") if fn is not None else None
self.api_name = api_name
self.js = js
self.show_progress = show_progress
self.cancels = cancels or []
self.collects_event_data = collects_event_data
self.trigger_after = trigger_after
self.trigger_only_on_success = trigger_only_on_success
self.trigger_mode = trigger_mode
self.queue = False if fn is None else queue
self.scroll_to_output = False if utils.get_space() else scroll_to_output
self.show_api = show_api
self.zero_gpu = hasattr(self.fn, "zerogpu")
self.types_generator = inspect.isgeneratorfunction(
self.fn
) or inspect.isasyncgenfunction(self.fn)
self.renderable = renderable
self.rendered_in = rendered_in
# We need to keep track of which events are cancel events
# so that the client can call the /cancel route directly
self.is_cancel_function = is_cancel_function
self.time_limit = time_limit
self.stream_every = stream_every
self.connection = connection
self.like_user_message = like_user_message
self.event_specific_args = event_specific_args
self.spaces_auto_wrap()
def spaces_auto_wrap(self):
if spaces is None:
return
if utils.get_space() is None:
return
self.fn = spaces.gradio_auto_wrap(self.fn)
def __str__(self):
return str(
{
"fn": self.name,
"preprocess": self.preprocess,
"postprocess": self.postprocess,
}
)
def __repr__(self):
return str(self)
def get_config(self):
return {
"id": self._id,
"targets": self.targets,
"inputs": [block._id for block in self.inputs],
"outputs": [block._id for block in self.outputs],
"backend_fn": self.fn is not None,
"js": self.js,
"queue": self.queue,
"api_name": self.api_name,
"scroll_to_output": self.scroll_to_output,
"show_progress": self.show_progress,
"batch": self.batch,
"max_batch_size": self.max_batch_size,
"cancels": self.cancels,
"types": {
"generator": self.types_generator,
"cancel": self.is_cancel_function,
},
"collects_event_data": self.collects_event_data,
"trigger_after": self.trigger_after,
"trigger_only_on_success": self.trigger_only_on_success,
"trigger_mode": self.trigger_mode,
"show_api": self.show_api,
"zerogpu": self.zero_gpu,
"rendered_in": self.rendered_in._id if self.rendered_in else None,
"connection": self.connection,
"time_limit": self.time_limit,
"stream_every": self.stream_every,
"like_user_message": self.like_user_message,
"event_specific_args": self.event_specific_args,
}
def postprocess_update_dict(
block: Component | BlockContext, update_dict: dict, postprocess: bool = True
):
"""
Converts a dictionary of updates into a format that can be sent to the frontend to update the component.
E.g. {"value": "2", "visible": True, "invalid_arg": "hello"}
Into -> {"__type__": "update", "value": 2.0, "visible": True}
Parameters:
block: The Block that is being updated with this update dictionary.
update_dict: The original update dictionary
postprocess: Whether to postprocess the "value" key of the update dictionary.
"""
value = update_dict.pop("value", components._Keywords.NO_VALUE)
update_dict = {k: getattr(block, k) for k in update_dict if hasattr(block, k)}
if value is not components._Keywords.NO_VALUE:
if postprocess:
update_dict["value"] = block.postprocess(value)
if isinstance(update_dict["value"], (GradioModel, GradioRootModel)):
update_dict["value"] = update_dict["value"].model_dump()
else:
update_dict["value"] = value
update_dict["__type__"] = "update"
return update_dict
def convert_component_dict_to_list(
outputs_ids: list[int], predictions: dict
) -> list | dict:
"""
Converts a dictionary of component updates into a list of updates in the order of
the outputs_ids and including every output component. Leaves other types of dictionaries unchanged.
E.g. {"textbox": "hello", "number": {"__type__": "generic_update", "value": "2"}}
Into -> ["hello", {"__type__": "generic_update"}, {"__type__": "generic_update", "value": "2"}]
"""
keys_are_blocks = [isinstance(key, Block) for key in predictions]
if all(keys_are_blocks):
reordered_predictions = [skip() for _ in outputs_ids]
for component, value in predictions.items():
if component._id not in outputs_ids:
raise ValueError(
f"Returned component {component} not specified as output of function."
)
output_index = outputs_ids.index(component._id)
reordered_predictions[output_index] = value
predictions = utils.resolve_singleton(reordered_predictions)
elif any(keys_are_blocks):
raise ValueError(
"Returned dictionary included some keys as Components. Either all keys must be Components to assign Component values, or return a List of values to assign output values in order."
)
return predictions
class BlocksConfig:
def __init__(self, root_block: Blocks):
self._id: int = 0
self.root_block = root_block
self.blocks: dict[int, Component | Block] = {}
self.fns: dict[int, BlockFunction] = {}
self.fn_id: int = 0
def set_event_trigger(
self,
targets: Sequence[EventListenerMethod],
fn: Callable | None,
inputs: (
Component
| BlockContext
| Sequence[Component | BlockContext]
| Set[Component | BlockContext]
| None
),
outputs: (
Component
| BlockContext
| Sequence[Component | BlockContext]
| Set[Component | BlockContext]
| None
),
preprocess: bool = True,
postprocess: bool = True,
scroll_to_output: bool = False,
show_progress: Literal["full", "minimal", "hidden"] = "full",
api_name: str | None | Literal[False] = None,
js: str | None = None,
no_target: bool = False,
queue: bool = True,
batch: bool = False,
max_batch_size: int = 4,
cancels: list[int] | None = None,
collects_event_data: bool | None = None,
trigger_after: int | None = None,
trigger_only_on_success: bool = False,
trigger_mode: Literal["once", "multiple", "always_last"] | None = "once",
concurrency_limit: int | None | Literal["default"] = "default",
concurrency_id: str | None = None,
show_api: bool = True,
renderable: Renderable | None = None,
is_cancel_function: bool = False,
connection: Literal["stream", "sse"] = "sse",
time_limit: float | None = None,
stream_every: float = 0.5,
like_user_message: bool = False,
event_specific_args: list[str] | None = None,
) -> tuple[BlockFunction, int]:
"""
Adds an event to the component's dependencies.
Parameters:
targets: a list of EventListenerMethod objects that define the event trigger
fn: the function to run when the event is triggered
inputs: the list of input components whose values will be passed to the function
outputs: the list of output components whose values will be updated by the function
preprocess: whether to run the preprocess methods of the input components before running the function
postprocess: whether to run the postprocess methods of the output components after running the function
scroll_to_output: whether to scroll to output of dependency on trigger
show_progress: how to show the progress animation while event is running: "full" shows a spinner which covers the output component area as well as a runtime display in the upper right corner, "minimal" only shows the runtime display, "hidden" shows no progress animation at all
api_name: defines how the endpoint appears in the API docs. Can be a string, None, or False. If set to a string, the endpoint will be exposed in the API docs with the given name. If None (default), the name of the function will be used as the API endpoint. If False, the endpoint will not be exposed in the API docs and downstream apps (including those that `gr.load` this app) will not be able to use this event.
js: Optional frontend js method to run before running 'fn'. Input arguments for js method are values of 'inputs' and 'outputs', return should be a list of values for output components
no_target: if True, sets "targets" to [], used for the Blocks.load() event and .then() events
queue: If True, will place the request on the queue, if the queue has been enabled. If False, will not put this event on the queue, even if the queue has been enabled. If None, will use the queue setting of the gradio app.
batch: whether this function takes in a batch of inputs
max_batch_size: the maximum batch size to send to the function
cancels: a list of other events to cancel when this event is triggered. For example, setting cancels=[click_event] will cancel the click_event, where click_event is the return value of another components .click method.
collects_event_data: whether to collect event data for this event
trigger_after: if set, this event will be triggered after 'trigger_after' function index
trigger_only_on_success: if True, this event will only be triggered if the previous event was successful (only applies if `trigger_after` is set)
trigger_mode: If "once" (default for all events except `.change()`) would not allow any submissions while an event is pending. If set to "multiple", unlimited submissions are allowed while pending, and "always_last" (default for `.change()` and `.key_up()` events) would allow a second submission after the pending event is complete.
concurrency_limit: If set, this is the maximum number of this event that can be running simultaneously. Can be set to None to mean no concurrency_limit (any number of this event can be running simultaneously). Set to "default" to use the default concurrency limit (defined by the `default_concurrency_limit` parameter in `queue()`, which itself is 1 by default).
concurrency_id: If set, this is the id of the concurrency group. Events with the same concurrency_id will be limited by the lowest set concurrency_limit.
show_api: whether to show this event in the "view API" page of the Gradio app, or in the ".view_api()" method of the Gradio clients. Unlike setting api_name to False, setting show_api to False will still allow downstream apps as well as the Clients to use this event. If fn is None, show_api will automatically be set to False.
is_cancel_function: whether this event cancels another running event.
connection: The connection format, either "sse" or "stream".
time_limit: The time limit for the function to run. Parameter only used for the `.stream()` event.
stream_every: The latency (in seconds) at which stream chunks are sent to the backend. Defaults to 0.5 seconds. Parameter only used for the `.stream()` event.
Returns: dependency information, dependency index
"""
# Support for singular parameter
_targets = [
(
target.block._id if not no_target and target.block else None,
target.event_name,
)
for target in targets
]
if isinstance(inputs, Set):
inputs_as_dict = True
inputs = sorted(inputs, key=lambda x: x._id)
else:
inputs_as_dict = False
if inputs is None:
inputs = []
elif not isinstance(inputs, Sequence):
inputs = [inputs]
if isinstance(outputs, Set):
outputs = sorted(outputs, key=lambda x: x._id)
elif outputs is None:
outputs = []
elif not isinstance(outputs, Sequence):
outputs = [outputs]
if fn is not None and not cancels:
check_function_inputs_match(fn, inputs, inputs_as_dict)
if _targets[0][1] in ["change", "key_up"] and trigger_mode is None:
trigger_mode = "always_last"
elif _targets[0][1] in ["stream"] and trigger_mode is None:
trigger_mode = "multiple"
elif trigger_mode is None:
trigger_mode = "once"
elif trigger_mode not in ["once", "multiple", "always_last"]:
raise ValueError(
f"Invalid value for parameter `trigger_mode`: {trigger_mode}. Please choose from: {['once', 'multiple', 'always_last']}"
)
_, progress_index, event_data_index = (
special_args(fn) if fn else (None, None, None)
)
# If api_name is None or empty string, use the function name
if api_name is None or isinstance(api_name, str) and api_name.strip() == "":
if fn is not None:
if not hasattr(fn, "__name__"):
if hasattr(fn, "__class__") and hasattr(fn.__class__, "__name__"):
name = fn.__class__.__name__
else:
name = "unnamed"
else:
name = fn.__name__
api_name = "".join(
[s for s in name if s not in set(string.punctuation) - {"-", "_"}]
)
elif js is not None:
api_name = "js_fn"
show_api = False
else:
api_name = "unnamed"
show_api = False
if api_name is not False:
api_name = utils.append_unique_suffix(
api_name,
[
fn.api_name
for fn in self.fns.values()
if isinstance(fn.api_name, str)
],
)
else:
show_api = False
# The `show_api` parameter is False if: (1) the user explicitly sets it (2) the user sets `api_name` to False
# or (3) the user sets `fn` to None (there's no backend function)
if collects_event_data is None:
collects_event_data = event_data_index is not None
rendered_in = LocalContext.renderable.get()
block_fn = BlockFunction(
fn,
inputs,
outputs,
preprocess,
postprocess,
_id=self.fn_id,
inputs_as_dict=inputs_as_dict,
targets=_targets,
batch=batch,
max_batch_size=max_batch_size,
concurrency_limit=concurrency_limit,
concurrency_id=concurrency_id,
tracks_progress=progress_index is not None,
api_name=api_name,
js=js,
show_progress=show_progress,
cancels=cancels,
collects_event_data=collects_event_data,
trigger_after=trigger_after,
trigger_only_on_success=trigger_only_on_success,
trigger_mode=trigger_mode,
queue=queue,
scroll_to_output=scroll_to_output,
show_api=show_api,
renderable=renderable,
rendered_in=rendered_in,
is_cancel_function=is_cancel_function,
connection=connection,
time_limit=time_limit,
stream_every=stream_every,
like_user_message=like_user_message,
event_specific_args=event_specific_args,
)
self.fns[self.fn_id] = block_fn
self.fn_id += 1
return block_fn, block_fn._id
def get_config(self, renderable: Renderable | None = None):
config = {}
rendered_ids = []
def get_layout(block: Block):
rendered_ids.append(block._id)
if not isinstance(block, BlockContext):
return {"id": block._id}
children_layout = []
for child in block.children:
children_layout.append(get_layout(child))
return {"id": block._id, "children": children_layout}
if renderable:
root_block = self.blocks[renderable.container_id]
else:
root_block = self.root_block
config["layout"] = get_layout(root_block)
config["components"] = []
for _id, block in self.blocks.items():
if renderable:
if _id not in rendered_ids:
continue
if block.key:
block.key = f"{renderable._id}-{block.key}"
props = block.get_config() if hasattr(block, "get_config") else {}
block_config = {
"id": _id,
"type": block.get_block_name(),
"props": utils.delete_none(props),
"skip_api": block.skip_api,
"component_class_id": getattr(block, "component_class_id", None),
"key": block.key,
}
if renderable:
block_config["renderable"] = renderable._id
if not block.skip_api:
block_config["api_info"] = block.api_info() # type: ignore
if hasattr(block, "api_info_as_input"):
block_config["api_info_as_input"] = block.api_info_as_input() # type: ignore
else:
block_config["api_info_as_input"] = block.api_info() # type: ignore
if hasattr(block, "api_info_as_output"):
block_config["api_info_as_output"] = block.api_info_as_output() # type: ignore
else:
block_config["api_info_as_output"] = block.api_info() # type: ignore
block_config["example_inputs"] = block.example_inputs() # type: ignore
config["components"].append(block_config)
dependencies = []
for fn in self.fns.values():
if renderable is None or fn.rendered_in == renderable:
dependencies.append(fn.get_config())
config["dependencies"] = dependencies
return config
def __copy__(self):
new = BlocksConfig(self.root_block)
new.blocks = copy.copy(self.blocks)
new.fns = copy.copy(self.fns)
new.fn_id = self.fn_id
return new
@document("launch", "queue", "integrate", "load", "unload")
class Blocks(BlockContext, BlocksEvents, metaclass=BlocksMeta):
"""
Blocks is Gradio's low-level API that allows you to create more custom web
applications and demos than Interfaces (yet still entirely in Python).
Compared to the Interface class, Blocks offers more flexibility and control over:
(1) the layout of components (2) the events that
trigger the execution of functions (3) data flows (e.g. inputs can trigger outputs,
which can trigger the next level of outputs). Blocks also offers ways to group
together related demos such as with tabs.
The basic usage of Blocks is as follows: create a Blocks object, then use it as a
context (with the "with" statement), and then define layouts, components, or events
within the Blocks context. Finally, call the launch() method to launch the demo.
Example:
import gradio as gr
def update(name):
return f"Welcome to Gradio, {name}!"
with gr.Blocks() as demo:
gr.Markdown("Start typing below and then click **Run** to see the output.")
with gr.Row():
inp = gr.Textbox(placeholder="What is your name?")
out = gr.Textbox()
btn = gr.Button("Run")
btn.click(fn=update, inputs=inp, outputs=out)
demo.launch()
Demos: blocks_hello, blocks_flipper, blocks_kinematics
Guides: blocks-and-event-listeners, controlling-layout, state-in-blocks, custom-CSS-and-JS, using-blocks-like-functions
"""
def __init__(
self,
theme: Theme | str | None = None,
analytics_enabled: bool | None = None,
mode: str = "blocks",
title: str = "Gradio",
css: str | None = None,
css_paths: str | Path | Sequence[str | Path] | None = None,
js: str | None = None,
head: str | None = None,
head_paths: str | Path | Sequence[str | Path] | None = None,
fill_height: bool = False,
fill_width: bool = False,
delete_cache: tuple[int, int] | None = None,
**kwargs,
):
"""
Parameters:
theme: A Theme object or a string representing a theme. If a string, will look for a built-in theme with that name (e.g. "soft" or "default"), or will attempt to load a theme from the Hugging Face Hub (e.g. "gradio/monochrome"). If None, will use the Default theme.
analytics_enabled: Whether to allow basic telemetry. If None, will use GRADIO_ANALYTICS_ENABLED environment variable or default to True.
mode: A human-friendly name for the kind of Blocks or Interface being created. Used internally for analytics.
title: The tab title to display when this is opened in a browser window.
css: Custom css as a code string. This css will be included in the demo webpage.
css_paths: Custom css as a pathlib.Path to a css file or a list of such paths. This css files will be read, concatenated, and included in the demo webpage. If the `css` parameter is also set, the css from `css` will be included first.
js: Custom js as a code string. The custom js should be in the form of a single js function. This function will automatically be executed when the page loads. For more flexibility, use the head parameter to insert js inside <script> tags.
head: Custom html code to insert into the head of the demo webpage. This can be used to add custom meta tags, multiple scripts, stylesheets, etc. to the page.
head_paths: Custom html code as a pathlib.Path to a html file or a list of such paths. This html files will be read, concatenated, and included in the head of the demo webpage. If the `head` parameter is also set, the html from `head` will be included first.
fill_height: Whether to vertically expand top-level child components to the height of the window. If True, expansion occurs when the scale value of the child components >= 1.
fill_width: Whether to horizontally expand to fill container fully. If False, centers and constrains app to a maximum width. Only applies if this is the outermost `Blocks` in your Gradio app.
delete_cache: A tuple corresponding [frequency, age] both expressed in number of seconds. Every `frequency` seconds, the temporary files created by this Blocks instance will be deleted if more than `age` seconds have passed since the file was created. For example, setting this to (86400, 86400) will delete temporary files every day. The cache will be deleted entirely when the server restarts. If None, no cache deletion will occur.
"""
self.limiter = None
if theme is None:
theme = DefaultTheme()
elif isinstance(theme, str):
if theme.lower() in BUILT_IN_THEMES:
theme = BUILT_IN_THEMES[theme.lower()]
else:
try:
theme = Theme.from_hub(theme)
except Exception as e:
warnings.warn(f"Cannot load {theme}. Caught Exception: {str(e)}")
theme = DefaultTheme()
if not isinstance(theme, Theme):
warnings.warn("Theme should be a class loaded from gradio.themes")
theme = DefaultTheme()
self.theme: Theme = theme
self.theme_css = theme._get_theme_css()
self.stylesheets = theme._stylesheets
theme_hasher = hashlib.sha256()
theme_hasher.update(self.theme_css.encode("utf-8"))
self.theme_hash = theme_hasher.hexdigest()
self.encrypt = False
self.share = False
self.enable_queue = True
self.max_threads = 40
self.pending_streams = defaultdict(dict)
self.pending_diff_streams = defaultdict(dict)
self.show_error = True
self.fill_height = fill_height
self.fill_width = fill_width
self.delete_cache = delete_cache
self.extra_startup_events: list[Callable[..., Coroutine[Any, Any, Any]]] = []
self.css = css or ""
css_paths = utils.none_or_singleton_to_list(css_paths)
for css_path in css_paths or []:
with open(css_path, encoding="utf-8") as css_file:
self.css += "\n" + css_file.read()
self.js = js or ""
self.head = head or ""
head_paths = utils.none_or_singleton_to_list(head_paths)
for head_path in head_paths or []:
with open(head_path, encoding="utf-8") as head_file:
self.head += "\n" + head_file.read()
self.renderables: list[Renderable] = []
self.state_holder: StateHolder
self.custom_mount_path: str | None = None
# For analytics_enabled and allow_flagging: (1) first check for
# parameter, (2) check for env variable, (3) default to True/"manual"
self.analytics_enabled = (
analytics_enabled
if analytics_enabled is not None
else analytics.analytics_enabled()
)
if self.analytics_enabled:
if not wasm_utils.IS_WASM:
t = threading.Thread(target=analytics.version_check)
t.start()
else:
os.environ["HF_HUB_DISABLE_TELEMETRY"] = "True"
self.enable_monitoring: bool | None = None
self.default_config = BlocksConfig(self)
super().__init__(render=False, **kwargs)
self.mode = mode
self.is_running = False
self.local_url = None
self.share_url = None
self.width = None
self.height = None
self.api_open = utils.get_space() is None
self.space_id = utils.get_space()
self.favicon_path = None
self.auth = None
self.dev_mode = bool(os.getenv("GRADIO_WATCH_DIRS", ""))
self.app_id = random.getrandbits(64)
self.upload_file_set = set()
self.temp_file_sets = [self.upload_file_set]
self.title = title
self.show_api = not wasm_utils.IS_WASM
# Only used when an Interface is loaded from a config
self.predict = None
self.input_components = None
self.output_components = None
self.__name__ = None # type: ignore
self.api_mode = None
self.progress_tracking = None
self.ssl_verify = True
self.allowed_paths = []
self.blocked_paths = []
self.root_path = os.environ.get("GRADIO_ROOT_PATH", "")
self.proxy_urls = set()
if self.analytics_enabled:
is_custom_theme = not any(
self.theme.to_dict() == built_in_theme.to_dict()
for built_in_theme in BUILT_IN_THEMES.values()
)
data = {
"mode": self.mode,
"custom_css": self.css is not None,
"theme": self.theme.name,
"is_custom_theme": is_custom_theme,
"version": get_package_version(),
}
analytics.initiated_analytics(data)
self.queue()
@property
def blocks(self) -> dict[int, Component | Block]:
return self.default_config.blocks
@blocks.setter
def blocks(self, value: dict[int, Component | Block]):
self.default_config.blocks = value
@property
def fns(self) -> dict[int, BlockFunction]:
return self.default_config.fns
def get_component(self, id: int) -> Component | BlockContext:
comp = self.blocks[id]
if not isinstance(comp, (components.Component, BlockContext)):
raise TypeError(f"Block with id {id} is not a Component or BlockContext")
return comp
@property
def _is_running_in_reload_thread(self):
if wasm_utils.IS_WASM:
# Wasm (Pyodide) doesn't support threading,
# so the return value is always False.
return False
from gradio.cli.commands.reload import reload_thread
return getattr(reload_thread, "running_reload", False)
@classmethod
def from_config(
cls,
config: BlocksConfigDict,
fns: list[Callable],
proxy_url: str,
) -> Blocks:
"""
Factory method that creates a Blocks from a config and list of functions. Used
internally by the gradio.external.load() method.
Parameters:
config: a dictionary containing the configuration of the Blocks.
fns: a list of functions that are used in the Blocks. Must be in the same order as the dependencies in the config.
proxy_url: an external url to use as a root URL when serving files for components in the Blocks.
"""
config = copy.deepcopy(config)
components_config = config["components"]
theme = config.get("theme", "default")
original_mapping: dict[int, Block] = {}
proxy_urls = {proxy_url}
def get_block_instance(id: int) -> Block:
for block_config in components_config:
if block_config["id"] == id:
break
else:
raise ValueError(f"Cannot find block with id {id}")
cls = component_or_layout_class(block_config["props"]["name"])
# If a Gradio app B is loaded into a Gradio app A, and B itself loads a
# Gradio app C, then the proxy_urls of the components in A need to be the
# URL of C, not B. The else clause below handles this case.
if block_config["props"].get("proxy_url") is None:
block_config["props"]["proxy_url"] = f"{proxy_url}/"
postprocessed_value = block_config["props"].pop("value", None)
constructor_args = cls.recover_kwargs(block_config["props"])
block = cls(**constructor_args)
if postprocessed_value is not None:
block.value = postprocessed_value # type: ignore
block_proxy_url = block_config["props"]["proxy_url"]
block.proxy_url = block_proxy_url
proxy_urls.add(block_proxy_url)
if (
_selectable := block_config["props"].pop("_selectable", None)
) is not None:
block._selectable = _selectable # type: ignore
return block
def iterate_over_children(children_list):
for child_config in children_list:
id = child_config["id"]
block = get_block_instance(id)
original_mapping[id] = block
children = child_config.get("children")
if children is not None:
if not isinstance(block, BlockContext):
raise ValueError(
f"Invalid config, Block with id {id} has children but is not a BlockContext."
)
with block:
iterate_over_children(children)
derived_fields = ["types"]
with Blocks(theme=theme) as blocks:
# ID 0 should be the root Blocks component
original_mapping[0] = root_block = Context.root_block or blocks
if "layout" in config:
iterate_over_children(config["layout"]["children"])
first_dependency = None
# add the event triggers
if "dependencies" not in config:
raise ValueError(
"This config is missing the 'dependencies' field and cannot be loaded."
)
for dependency, fn in zip(config["dependencies"], fns, strict=False):
# We used to add a "fake_event" to the config to cache examples
# without removing it. This was causing bugs in calling gr.load
# We fixed the issue by removing "fake_event" from the config in examples.py
# but we still need to skip these events when loading the config to support
# older demos
if "trigger" in dependency and dependency["trigger"] == "fake_event":
continue
for field in derived_fields:
dependency.pop(field, None)
# older versions had a separate trigger field, but now it is part of the
# targets field
_targets = dependency.pop("targets")
trigger = dependency.pop("trigger", None)
is_then_event = False
# This assumes that you cannot combine multiple .then() events in a single
# gr.on() event, which is true for now. If this changes, we will need to
# update this code.
if not isinstance(_targets[0], int) and _targets[0][1] in [
"then",
"success",
]:
if len(_targets) != 1:
raise ValueError(
"This logic assumes that .then() events are not combined with other events in a single gr.on() event"
)
is_then_event = True
dependency.pop("backend_fn")
dependency.pop("documentation", None)
dependency["inputs"] = [
original_mapping[i] for i in dependency["inputs"]
]
dependency["outputs"] = [
original_mapping[o] for o in dependency["outputs"]
]
dependency.pop("status_tracker", None)
dependency.pop("zerogpu", None)
dependency.pop("id", None)
dependency.pop("rendered_in", None)
dependency.pop("every", None)
dependency["preprocess"] = False
dependency["postprocess"] = False
if is_then_event:
targets = [EventListenerMethod(None, "then")]
dependency["trigger_after"] = dependency.pop("trigger_after")
dependency["trigger_only_on_success"] = dependency.pop(
"trigger_only_on_success"
)
dependency["no_target"] = True
else:
targets = [
getattr(
original_mapping[
target if isinstance(target, int) else target[0]
],
trigger if isinstance(target, int) else target[1],
)
for target in _targets
]
targets = [
EventListenerMethod(
t.__self__ if t.has_trigger else None,
t.event_name, # type: ignore
)
for t in targets
]
dependency = root_block.default_config.set_event_trigger(
targets=targets, fn=fn, **dependency
)[0]
if first_dependency is None:
first_dependency = dependency
# Allows some use of Interface-specific methods with loaded Spaces
if first_dependency and get_blocks_context():
blocks.predict = [fns[0]]
blocks.input_components = first_dependency.inputs
blocks.output_components = first_dependency.outputs
blocks.__name__ = "Interface"
blocks.api_mode = True
blocks.proxy_urls = proxy_urls
return blocks
def __str__(self):
return self.__repr__()
def __repr__(self):
num_backend_fns = len([d for d in self.fns.values() if d.fn])
repr = f"Gradio Blocks instance: {num_backend_fns} backend functions"
repr += f"\n{'-' * len(repr)}"
for d, dependency in self.fns.items():
if dependency.fn:
repr += f"\nfn_index={d}"
repr += "\n inputs:"
for block in dependency.inputs:
block = self.blocks[block._id]
repr += f"\n |-{block}"
repr += "\n outputs:"
for block in dependency.outputs:
block = self.blocks[block._id]
repr += f"\n |-{block}"
return repr
@property
def expects_oauth(self):
"""Return whether the app expects user to authenticate via OAuth."""
return any(
isinstance(block, components.LoginButton) for block in self.blocks.values()
)
def unload(self, fn: Callable[..., Any]) -> None:
"""This listener is triggered when the user closes or refreshes the tab, ending the user session.
It is useful for cleaning up resources when the app is closed.
Parameters:
fn: Callable function to run to clear resources. The function should not take any arguments and the output is not used.
Example:
import gradio as gr
with gr.Blocks() as demo:
gr.Markdown("# When you close the tab, hello will be printed to the console")
demo.unload(lambda: print("hello"))
demo.launch()
"""
self.default_config.set_event_trigger(
targets=[EventListenerMethod(None, "unload")],
fn=fn,
inputs=None,
outputs=None,
preprocess=False,
postprocess=False,
show_progress="hidden",
api_name=None,
js=None,
no_target=True,
batch=False,
max_batch_size=4,
cancels=None,
collects_event_data=None,
trigger_after=None,
trigger_only_on_success=False,
trigger_mode="once",
concurrency_limit="default",
concurrency_id=None,
show_api=False,
)
def render(self):
root_context = get_blocks_context()
if root_context is not None and Context.root_block is not None:
if self._id in root_context.blocks:
raise DuplicateBlockError(
f"A block with id: {self._id} has already been rendered in the current Blocks."
)
overlapping_ids = set(root_context.blocks).intersection(self.blocks)
for id in overlapping_ids:
# State components are allowed to be reused between Blocks
if not isinstance(self.blocks[id], components.State):
raise DuplicateBlockError(
"At least one block in this Blocks has already been rendered."
)
root_context.blocks.update(self.blocks)
dependency_offset = max(root_context.fns.keys(), default=-1) + 1
existing_api_names = [
dep.api_name
for dep in root_context.fns.values()
if isinstance(dep.api_name, str)
]
for dependency in self.fns.values():
dependency._id += dependency_offset
api_name = dependency.api_name
if isinstance(api_name, str):
api_name_ = utils.append_unique_suffix(
api_name,
existing_api_names,
)
if api_name != api_name_:
dependency.api_name = api_name_
dependency.cancels = [c + dependency_offset for c in dependency.cancels]
if dependency.trigger_after is not None:
dependency.trigger_after += dependency_offset
# Recreate the cancel function so that it has the latest
# dependency fn indices. This is necessary to properly cancel
# events in the backend
if dependency.cancels:
updated_cancels = [
root_context.fns[i].get_config() for i in dependency.cancels
]
dependency.cancels = get_cancelled_fn_indices(updated_cancels)
root_context.fns[dependency._id] = dependency
root_context.fn_id = max(root_context.fns.keys(), default=-1) + 1
Context.root_block.temp_file_sets.extend(self.temp_file_sets)
Context.root_block.proxy_urls.update(self.proxy_urls)
Context.root_block.extra_startup_events.extend(self.extra_startup_events)
render_context = get_render_context()
if render_context is not None:
render_context.children.extend(self.children)
return self
def is_callable(self, fn_index: int = 0) -> bool:
"""Checks if a particular Blocks function is callable (i.e. not stateful or a generator)."""
block_fn = self.fns[fn_index]
dependency = self.fns[fn_index]
if inspect.isasyncgenfunction(block_fn.fn):
return False
if inspect.isgeneratorfunction(block_fn.fn):
return False
if any(block.stateful for block in dependency.inputs):
return False
if any(block.stateful for block in dependency.outputs):
return False
return True
def __call__(self, *inputs, fn_index: int = 0, api_name: str | None = None):
"""
Allows Blocks objects to be called as functions. Supply the parameters to the
function as positional arguments. To choose which function to call, use the
fn_index parameter, which must be a keyword argument.
Parameters:
*inputs: the parameters to pass to the function
fn_index: the index of the function to call (defaults to 0, which for Interfaces, is the default prediction function)
api_name: The api_name of the dependency to call. Will take precedence over fn_index.
"""
if api_name is not None:
inferred_fn_index = next(
(i for i, d in self.fns.items() if d.api_name == api_name),
None,
)
if inferred_fn_index is None:
raise InvalidApiNameError(
f"Cannot find a function with api_name {api_name}"
)
fn_index = inferred_fn_index
if not (self.is_callable(fn_index)):
raise ValueError(
"This function is not callable because it is either stateful or is a generator. Please use the .launch() method instead to create an interactive user interface."
)
inputs = list(inputs)
processed_inputs = self.serialize_data(fn_index, inputs)
fn = self.fns[fn_index]
if fn.batch:
processed_inputs = [[inp] for inp in processed_inputs]
outputs = client_utils.synchronize_async(
self.process_api,
block_fn=fn,
inputs=processed_inputs,
request=None,
state={},
explicit_call=True,
)
outputs = outputs["data"]
if fn.batch:
outputs = [out[0] for out in outputs]
outputs = self.deserialize_data(fn_index, outputs)
processed_outputs = utils.resolve_singleton(outputs)
return processed_outputs
async def call_function(
self,
block_fn: BlockFunction | int,
processed_input: list[Any],
iterator: AsyncIterator[Any] | None = None,
requests: routes.Request | list[routes.Request] | None = None,
event_id: str | None = None,
event_data: EventData | None = None,
in_event_listener: bool = False,
state: SessionState | None = None,
):
"""
Calls function with given index and preprocessed input, and measures process time.
Parameters:
fn_index: index of function to call
processed_input: preprocessed input to pass to function
iterator: iterator to use if function is a generator
requests: requests to pass to function
event_id: id of event in queue
event_data: data associated with event trigger
"""
if isinstance(block_fn, int):
block_fn = self.fns[block_fn]
if not block_fn.fn:
raise IndexError("function has no backend method.")
is_generating = False
request = requests[0] if isinstance(requests, list) else requests
start = time.time()
fn = utils.get_function_with_locals(
fn=block_fn.fn,
blocks=self,
event_id=event_id,
in_event_listener=in_event_listener,
request=request,
state=state,
)
if iterator is None: # If not a generator function that has already run
if block_fn.inputs_as_dict:
processed_input = [
dict(zip(block_fn.inputs, processed_input, strict=False))
]
processed_input, progress_index, _ = special_args(
block_fn.fn, processed_input, request, event_data
)
progress_tracker = (
processed_input[progress_index] if progress_index is not None else None
)
if progress_tracker is not None and progress_index is not None:
progress_tracker, fn = create_tracker(fn, progress_tracker.track_tqdm)
processed_input[progress_index] = progress_tracker
if inspect.iscoroutinefunction(fn):
prediction = await fn(*processed_input)
else:
prediction = await anyio.to_thread.run_sync( # type: ignore
fn, *processed_input, limiter=self.limiter
)
else:
prediction = None
if inspect.isgeneratorfunction(fn) or inspect.isasyncgenfunction(fn):
try:
if iterator is None:
iterator = cast(AsyncIterator[Any], prediction)
if inspect.isgenerator(iterator):
iterator = utils.SyncToAsyncIterator(iterator, self.limiter)
prediction = await utils.async_iteration(iterator)
is_generating = True
except StopAsyncIteration:
n_outputs = len(block_fn.outputs)
prediction = (
components._Keywords.FINISHED_ITERATING
if n_outputs == 1
else (components._Keywords.FINISHED_ITERATING,) * n_outputs
)
iterator = None
duration = time.time() - start
return {
"prediction": prediction,
"duration": duration,
"is_generating": is_generating,
"iterator": iterator,
}
def serialize_data(self, fn_index: int, inputs: list[Any]) -> list[Any]:
dependency = self.fns[fn_index]
processed_input = []
def format_file(s):
return FileData(path=s).model_dump()
for i, block in enumerate(dependency.inputs):
if not isinstance(block, components.Component):
raise InvalidComponentError(
f"{block.__class__} Component not a valid input component."
)
api_info = block.api_info()
if client_utils.value_is_file(api_info):
serialized_input = client_utils.traverse(
inputs[i],
format_file,
lambda s: client_utils.is_filepath(s)
or client_utils.is_http_url_like(s),
)
else:
serialized_input = inputs[i]
processed_input.append(serialized_input)
return processed_input
def deserialize_data(self, fn_index: int, outputs: list[Any]) -> list[Any]:
dependency = self.fns[fn_index]
predictions = []
for o, block in enumerate(dependency.outputs):
if not isinstance(block, components.Component):
raise InvalidComponentError(
f"{block.__class__} Component not a valid output component."
)
deserialized = client_utils.traverse(
outputs[o], lambda s: s["path"], client_utils.is_file_obj
)
predictions.append(deserialized)
return predictions
def validate_inputs(self, block_fn: BlockFunction, inputs: list[Any]):
dep_inputs = block_fn.inputs
# This handles incorrect inputs when args are changed by a JS function
# Only check not enough args case, ignore extra arguments (for now)
# TODO: make this stricter?
if len(inputs) < len(dep_inputs):
name = (
f" ({block_fn.name})"
if block_fn.name and block_fn.name != "<lambda>"
else ""
)
wanted_args = []
received_args = []
for block in dep_inputs:
wanted_args.append(str(block))
for inp in inputs:
v = f'"{inp}"' if isinstance(inp, str) else str(inp)
received_args.append(v)
wanted = ", ".join(wanted_args)
received = ", ".join(received_args)
# JS func didn't pass enough arguments
raise ValueError(
f"""An event handler{name} didn't receive enough input values (needed: {len(dep_inputs)}, got: {len(inputs)}).
Check if the event handler calls a Javascript function, and make sure its return value is correct.
Wanted inputs:
[{wanted}]
Received inputs:
[{received}]"""
)
async def preprocess_data(
self,
block_fn: BlockFunction,
inputs: list[Any],
state: SessionState | None,
explicit_call: bool = False,
):
state = state or SessionState(self)
self.validate_inputs(block_fn, inputs)
if block_fn.preprocess:
processed_input = []
for i, block in enumerate(block_fn.inputs):
if not isinstance(block, components.Component):
raise InvalidComponentError(
f"{block.__class__} Component not a valid input component."
)
if block.stateful:
processed_input.append(state[block._id])
else:
if block._id in state:
block = state[block._id]
inputs_cached = await processing_utils.async_move_files_to_cache(
inputs[i],
block,
check_in_upload_folder=not explicit_call,
)
if getattr(block, "data_model", None) and inputs_cached is not None:
if issubclass(block.data_model, GradioModel): # type: ignore
inputs_cached = block.data_model(**inputs_cached) # type: ignore
elif issubclass(block.data_model, GradioRootModel): # type: ignore
inputs_cached = block.data_model(root=inputs_cached) # type: ignore
processed_input.append(block.preprocess(inputs_cached))
else:
processed_input = inputs
return processed_input
def validate_outputs(self, block_fn: BlockFunction, predictions: Any | list[Any]):
dep_outputs = block_fn.outputs
if not isinstance(predictions, (list, tuple)):
predictions = [predictions]
if len(predictions) != len(dep_outputs):
name = (
f" ({block_fn.name})"
if block_fn.name and block_fn.name != "<lambda>"
else ""
)
wanted_args = []
received_args = []
for block in dep_outputs:
wanted_args.append(str(block.get_block_class()))
for pred in predictions:
v = f'"{pred}"' if isinstance(pred, str) else str(pred)
received_args.append(v)
wanted = ", ".join(wanted_args)
received = ", ".join(received_args)
if len(predictions) < len(dep_outputs):
raise ValueError(
f"""A function{name} didn't return enough output values (needed: {len(dep_outputs)}, returned: {len(predictions)}).
Output components:
[{wanted}]
Output values returned:
[{received}]"""
)
else:
warnings.warn(
f"""A function{name} returned too many output values (needed: {len(dep_outputs)}, returned: {len(predictions)}). Ignoring extra values.
Output components:
[{wanted}]
Output values returned:
[{received}]"""
)
async def postprocess_data(
self,
block_fn: BlockFunction,
predictions: list | dict,
state: SessionState | None,
) -> list[Any]:
state = state or SessionState(self)
if (
isinstance(predictions, dict)
and predictions == skip()
and len(block_fn.outputs) > 1
):
# For developer convenience, if a function returns a single skip() with multiple outputs,
# we will skip updating all outputs.
predictions = [skip()] * len(block_fn.outputs)
if isinstance(predictions, dict) and len(predictions) > 0:
predictions = convert_component_dict_to_list(
[block._id for block in block_fn.outputs], predictions
)
if len(block_fn.outputs) == 1 and not block_fn.batch:
predictions = [
predictions,
]
self.validate_outputs(block_fn, predictions) # type: ignore
output = []
for i, block in enumerate(block_fn.outputs):
try:
if predictions[i] is components._Keywords.FINISHED_ITERATING:
output.append(None)
continue
except (IndexError, KeyError) as err:
raise ValueError(
"Number of output components does not match number "
f"of values returned from from function {block_fn.name}"
) from err
if block.stateful:
if not utils.is_prop_update(predictions[i]):
state[block._id] = predictions[i]
output.append(None)
else:
prediction_value = predictions[i]
if utils.is_prop_update(
prediction_value
): # if update is passed directly (deprecated), remove Nones
prediction_value = utils.delete_none(
prediction_value, skip_value=True
)
if isinstance(prediction_value, Block):
prediction_value = prediction_value.constructor_args.copy()
prediction_value["__type__"] = "update"
if utils.is_prop_update(prediction_value):
kwargs = state[block._id].constructor_args.copy()
kwargs.update(prediction_value)
kwargs.pop("value", None)
kwargs.pop("__type__")
kwargs["render"] = False
state[block._id] = block.__class__(**kwargs)
prediction_value = postprocess_update_dict(
block=state[block._id],
update_dict=prediction_value,
postprocess=block_fn.postprocess,
)
elif block_fn.postprocess:
if not isinstance(block, components.Component):
raise InvalidComponentError(
f"{block.__class__} Component not a valid output component."
)
if block._id in state:
block = state[block._id]
prediction_value = block.postprocess(prediction_value)
outputs_cached = await processing_utils.async_move_files_to_cache(
prediction_value,
block,
postprocess=True,
)
output.append(outputs_cached)
return output
async def handle_streaming_outputs(
self,
block_fn: BlockFunction,
data: list,
session_hash: str | None,
run: int | None,
root_path: str | None = None,
final: bool = False,
) -> list:
if session_hash is None or run is None:
return data
if run not in self.pending_streams[session_hash]:
self.pending_streams[session_hash][run] = {}
stream_run: dict[int, MediaStream] = self.pending_streams[session_hash][run]
for i, block in enumerate(block_fn.outputs):
output_id = block._id
if (
isinstance(block, components.StreamingOutput)
and block.streaming
and not utils.is_prop_update(data[i])
):
if final:
stream_run[output_id].end_stream()
first_chunk = output_id not in stream_run
binary_data, output_data = await block.stream_output(
data[i],
f"{session_hash}/{run}/{output_id}/playlist.m3u8",
first_chunk,
)
if first_chunk:
desired_output_format = None
if orig_name := output_data.get("orig_name"):
desired_output_format = Path(orig_name).suffix[1:]
stream_run[output_id] = MediaStream(
desired_output_format=desired_output_format
)
stream_run[output_id]
await stream_run[output_id].add_segment(binary_data)
output_data = await processing_utils.async_move_files_to_cache(
output_data,
block,
postprocess=True,
)
if root_path is not None:
output_data = processing_utils.add_root_url(
output_data, root_path, None
)
data[i] = output_data
return data
def handle_streaming_diffs(
self,
block_fn: BlockFunction,
data: list,
session_hash: str | None,
run: int | None,
final: bool,
simple_format: bool = False,
) -> list:
if session_hash is None or run is None:
return data
first_run = run not in self.pending_diff_streams[session_hash]
if first_run:
self.pending_diff_streams[session_hash][run] = [None] * len(data)
last_diffs = self.pending_diff_streams[session_hash][run]
for i in range(len(block_fn.outputs)):
if final:
data[i] = last_diffs[i]
continue
if first_run:
last_diffs[i] = data[i]
else:
prev_chunk = last_diffs[i]
last_diffs[i] = data[i]
if not simple_format:
data[i] = utils.diff(prev_chunk, data[i])
if final:
del self.pending_diff_streams[session_hash][run]
return data
async def process_api(
self,
block_fn: BlockFunction | int,
inputs: list[Any],
state: SessionState | None = None,
request: routes.Request | list[routes.Request] | None = None,
iterator: AsyncIterator | None = None,
session_hash: str | None = None,
event_id: str | None = None,
event_data: EventData | None = None,
in_event_listener: bool = True,
simple_format: bool = False,
explicit_call: bool = False,
root_path: str | None = None,
) -> dict[str, Any]:
"""
Processes API calls from the frontend. First preprocesses the data,
then runs the relevant function, then postprocesses the output.
Parameters:
fn_index: Index of function to run.
inputs: input data received from the frontend
state: data stored from stateful components for session (key is input block id)
request: the gr.Request object containing information about the network request (e.g. IP address, headers, query parameters, username)
iterators: the in-progress iterators for each generator function (key is function index)
event_id: id of event that triggered this API call
event_data: data associated with the event trigger itself
in_event_listener: whether this API call is being made in response to an event listener
explicit_call: whether this call is being made directly by calling the Blocks function, instead of through an event listener or API route
root_path: if provided, the root path of the server. All file URLs will be prefixed with this path.
Returns: None
"""
if isinstance(block_fn, int):
block_fn = self.fns[block_fn]
batch = block_fn.batch
state_ids_to_track, hashed_values = self.get_state_ids_to_track(block_fn, state)
changed_state_ids = []
LocalContext.blocks.set(self)
if batch:
max_batch_size = block_fn.max_batch_size
batch_sizes = [len(inp) for inp in inputs]
batch_size = batch_sizes[0]
if inspect.isasyncgenfunction(block_fn.fn) or inspect.isgeneratorfunction(
block_fn.fn
):
raise ValueError("Gradio does not support generators in batch mode.")
if not all(x == batch_size for x in batch_sizes):
raise ValueError(
f"All inputs to a batch function must have the same length but instead have sizes: {batch_sizes}."
)
if batch_size > max_batch_size:
raise ValueError(
f"Batch size ({batch_size}) exceeds the max_batch_size for this function ({max_batch_size})"
)
inputs = [
await self.preprocess_data(block_fn, list(i), state, explicit_call)
for i in zip(*inputs, strict=False)
]
result = await self.call_function(
block_fn,
list(zip(*inputs, strict=False)),
None,
request,
event_id,
event_data,
in_event_listener,
state,
)
preds = result["prediction"]
data = [
await self.postprocess_data(block_fn, list(o), state)
for o in zip(*preds, strict=False)
]
if root_path is not None:
data = processing_utils.add_root_url(data, root_path, None) # type: ignore
data = list(zip(*data, strict=False))
is_generating, iterator = None, None
else:
old_iterator = iterator
if old_iterator:
inputs = []
else:
inputs = await self.preprocess_data(
block_fn, inputs, state, explicit_call
)
was_generating = old_iterator is not None
result = await self.call_function(
block_fn,
inputs,
old_iterator,
request,
event_id,
event_data,
in_event_listener,
state,
)
data = await self.postprocess_data(block_fn, result["prediction"], state)
if state:
changed_state_ids = [
state_id
for hash_value, state_id in zip(
hashed_values, state_ids_to_track, strict=False
)
if hash_value != utils.deep_hash(state[state_id])
]
if root_path is not None:
data = processing_utils.add_root_url(data, root_path, None)
is_generating, iterator = result["is_generating"], result["iterator"]
if is_generating or was_generating:
run = id(old_iterator) if was_generating else id(iterator)
data = await self.handle_streaming_outputs(
block_fn,
data,
session_hash=session_hash,
run=run,
root_path=root_path,
final=not is_generating,
)
data = self.handle_streaming_diffs(
block_fn,
data,
session_hash=session_hash,
run=run,
final=not is_generating,
simple_format=simple_format,
)
block_fn.total_runtime += result["duration"]
block_fn.total_runs += 1
output = {
"data": data,
"is_generating": is_generating,
"iterator": iterator,
"duration": result["duration"],
"average_duration": block_fn.total_runtime / block_fn.total_runs,
"render_config": None,
"changed_state_ids": changed_state_ids,
}
if block_fn.renderable and state:
output["render_config"] = state.blocks_config.get_config(
block_fn.renderable
)
output["render_config"]["render_id"] = block_fn.renderable._id
if root_path is not None:
output["render_config"] = processing_utils.add_root_url(
output["render_config"], root_path, None
)
return output
def get_state_ids_to_track(
self, block_fn: BlockFunction, state: SessionState | None
) -> tuple[list[int], list]:
if state is None:
return [], []
state_ids_to_track = []
hashed_values = []
for block in block_fn.outputs:
if block.stateful and any(
(block._id, "change") in fn.targets for fn in self.fns.values()
):
value = state[block._id]
state_ids_to_track.append(block._id)
hashed_values.append(utils.deep_hash(value))
return state_ids_to_track, hashed_values
def create_limiter(self):
self.limiter = (
None
if self.max_threads == 40
else CapacityLimiter(total_tokens=self.max_threads)
)
def get_config(self):
return {"type": "column"}
def get_config_file(self) -> BlocksConfigDict:
config: BlocksConfigDict = {
"version": routes.VERSION,
"api_prefix": API_PREFIX,
"mode": self.mode,
"app_id": self.app_id,
"dev_mode": self.dev_mode,
"analytics_enabled": self.analytics_enabled,
"components": [],
"css": self.css,
"connect_heartbeat": False,
"js": self.js,
"head": self.head,
"title": self.title or "Gradio",
"space_id": self.space_id,
"enable_queue": True, # launch attributes
"show_error": getattr(self, "show_error", False),
"show_api": self.show_api,
"is_colab": utils.colab_check(),
"max_file_size": getattr(self, "max_file_size", None),
"stylesheets": self.stylesheets,
"theme": self.theme.name,
"protocol": "sse_v3",
"body_css": {
"body_background_fill": self.theme._get_computed_value(
"body_background_fill"
),
"body_text_color": self.theme._get_computed_value("body_text_color"),
"body_background_fill_dark": self.theme._get_computed_value(
"body_background_fill_dark"
),
"body_text_color_dark": self.theme._get_computed_value(
"body_text_color_dark"
),
},
"fill_height": self.fill_height,
"fill_width": self.fill_width,
"theme_hash": self.theme_hash,
}
config.update(self.default_config.get_config()) # type: ignore
config["connect_heartbeat"] = utils.connect_heartbeat(
config, self.blocks.values()
)
return config
def __enter__(self):
render_context = get_render_context()
if render_context is None:
Context.root_block = self
self.parent = render_context
set_render_context(self)
self.exited = False
return self
def __exit__(self, exc_type: type[BaseException] | None = None, *args):
if exc_type is not None:
set_render_context(None)
Context.root_block = None
return
super().fill_expected_parents()
set_render_context(self.parent)
# Configure the load events before root_block is reset
self.attach_load_events()
if self.parent is None:
Context.root_block = None
else:
self.parent.children.extend(self.children)
self.config = self.get_config_file()
self.app = routes.App.create_app(self)
self.progress_tracking = any(
block_fn.tracks_progress for block_fn in self.fns.values()
)
self.exited = True
def clear(self):
"""Resets the layout of the Blocks object."""
self.default_config.blocks = {}
self.default_config.fns = {}
self.children = []
return self
@document()
def queue(
self,
status_update_rate: float | Literal["auto"] = "auto",
api_open: bool | None = None,
max_size: int | None = None,
*,
default_concurrency_limit: int | None | Literal["not_set"] = "not_set",
):
"""
By enabling the queue you can control when users know their position in the queue, and set a limit on maximum number of events allowed.
Parameters:
status_update_rate: If "auto", Queue will send status estimations to all clients whenever a job is finished. Otherwise Queue will send status at regular intervals set by this parameter as the number of seconds.
api_open: If True, the REST routes of the backend will be open, allowing requests made directly to those endpoints to skip the queue.
max_size: The maximum number of events the queue will store at any given moment. If the queue is full, new events will not be added and a user will receive a message saying that the queue is full. If None, the queue size will be unlimited.
default_concurrency_limit: The default value of `concurrency_limit` to use for event listeners that don't specify a value. Can be set by environment variable GRADIO_DEFAULT_CONCURRENCY_LIMIT. Defaults to 1 if not set otherwise.
Example: (Blocks)
with gr.Blocks() as demo:
button = gr.Button(label="Generate Image")
button.click(fn=image_generator, inputs=gr.Textbox(), outputs=gr.Image())
demo.queue(max_size=10)
demo.launch()
Example: (Interface)
demo = gr.Interface(image_generator, gr.Textbox(), gr.Image())
demo.queue(max_size=20)
demo.launch()
"""
if api_open is not None:
self.api_open = api_open
if utils.is_zero_gpu_space():
max_size = 1 if max_size is None else max_size
self._queue = queueing.Queue(
live_updates=status_update_rate == "auto",
concurrency_count=self.max_threads,
update_intervals=status_update_rate if status_update_rate != "auto" else 1,
max_size=max_size,
blocks=self,
default_concurrency_limit=default_concurrency_limit,
)
self.config = self.get_config_file()
self.app = routes.App.create_app(self)
return self
def validate_queue_settings(self):
for dep in self.fns.values():
for i in dep.cancels:
if not self.fns[i].queue:
raise ValueError(
"Queue needs to be enabled! "
"You may get this error by either 1) passing a function that uses the yield keyword "
"into an interface without enabling the queue or 2) defining an event that cancels "
"another event without enabling the queue. Both can be solved by calling .queue() "
"before .launch()"
)
if dep.batch and dep.queue is False:
raise ValueError("In order to use batching, the queue must be enabled.")
def launch(
self,
inline: bool | None = None,
inbrowser: bool = False,
share: bool | None = None,
debug: bool = False,
max_threads: int = 40,
auth: (
Callable[[str, str], bool] | tuple[str, str] | list[tuple[str, str]] | None
) = None,
auth_message: str | None = None,
prevent_thread_lock: bool = False,
show_error: bool = False,
server_name: str | None = None,
server_port: int | None = None,
*,
height: int = 500,
width: int | str = "100%",
favicon_path: str | None = None,
ssl_keyfile: str | None = None,
ssl_certfile: str | None = None,
ssl_keyfile_password: str | None = None,
ssl_verify: bool = True,
quiet: bool = False,
show_api: bool = not wasm_utils.IS_WASM,
allowed_paths: list[str] | None = None,
blocked_paths: list[str] | None = None,
root_path: str | None = None,
app_kwargs: dict[str, Any] | None = None,
state_session_capacity: int = 10000,
share_server_address: str | None = None,
share_server_protocol: Literal["http", "https"] | None = None,
auth_dependency: Callable[[fastapi.Request], str | None] | None = None,
max_file_size: str | int | None = None,
enable_monitoring: bool | None = None,
strict_cors: bool = True,
node_server_name: str | None = None,
node_port: int | None = None,
ssr_mode: bool | None = None,
_frontend: bool = True,
) -> tuple[routes.App, str, str]:
"""
Launches a simple web server that serves the demo. Can also be used to create a
public link used by anyone to access the demo from their browser by setting share=True.
Parameters:
inline: whether to display in the gradio app inline in an iframe. Defaults to True in python notebooks; False otherwise.
inbrowser: whether to automatically launch the gradio app in a new tab on the default browser.
share: whether to create a publicly shareable link for the gradio app. Creates an SSH tunnel to make your UI accessible from anywhere. If not provided, it is set to False by default every time, except when running in Google Colab. When localhost is not accessible (e.g. Google Colab), setting share=False is not supported. Can be set by environment variable GRADIO_SHARE=True.
debug: if True, blocks the main thread from running. If running in Google Colab, this is needed to print the errors in the cell output.
auth: If provided, username and password (or list of username-password tuples) required to access app. Can also provide function that takes username and password and returns True if valid login.
auth_message: If provided, HTML message provided on login page.
prevent_thread_lock: By default, the gradio app blocks the main thread while the server is running. If set to True, the gradio app will not block and the gradio server will terminate as soon as the script finishes.
show_error: If True, any errors in the gradio app will be displayed in an alert modal and printed in the browser console log
server_port: will start gradio app on this port (if available). Can be set by environment variable GRADIO_SERVER_PORT. If None, will search for an available port starting at 7860.
server_name: to make app accessible on local network, set this to "0.0.0.0". Can be set by environment variable GRADIO_SERVER_NAME. If None, will use "127.0.0.1".
max_threads: the maximum number of total threads that the Gradio app can generate in parallel. The default is inherited from the starlette library (currently 40).
width: The width in pixels of the iframe element containing the gradio app (used if inline=True)
height: The height in pixels of the iframe element containing the gradio app (used if inline=True)
favicon_path: If a path to a file (.png, .gif, or .ico) is provided, it will be used as the favicon for the web page.
ssl_keyfile: If a path to a file is provided, will use this as the private key file to create a local server running on https.
ssl_certfile: If a path to a file is provided, will use this as the signed certificate for https. Needs to be provided if ssl_keyfile is provided.
ssl_keyfile_password: If a password is provided, will use this with the ssl certificate for https.
ssl_verify: If False, skips certificate validation which allows self-signed certificates to be used.
quiet: If True, suppresses most print statements.
show_api: If True, shows the api docs in the footer of the app. Default True.
allowed_paths: List of complete filepaths or parent directories that gradio is allowed to serve. Must be absolute paths. Warning: if you provide directories, any files in these directories or their subdirectories are accessible to all users of your app. Can be set by comma separated environment variable GRADIO_ALLOWED_PATHS. These files are generally assumed to be secure and will be displayed in the browser when possible.
blocked_paths: List of complete filepaths or parent directories that gradio is not allowed to serve (i.e. users of your app are not allowed to access). Must be absolute paths. Warning: takes precedence over `allowed_paths` and all other directories exposed by Gradio by default. Can be set by comma separated environment variable GRADIO_BLOCKED_PATHS.
root_path: The root path (or "mount point") of the application, if it's not served from the root ("/") of the domain. Often used when the application is behind a reverse proxy that forwards requests to the application. For example, if the application is served at "https://example.com/myapp", the `root_path` should be set to "/myapp". A full URL beginning with http:// or https:// can be provided, which will be used as the root path in its entirety. Can be set by environment variable GRADIO_ROOT_PATH. Defaults to "".
app_kwargs: Additional keyword arguments to pass to the underlying FastAPI app as a dictionary of parameter keys and argument values. For example, `{"docs_url": "/docs"}`
state_session_capacity: The maximum number of sessions whose information to store in memory. If the number of sessions exceeds this number, the oldest sessions will be removed. Reduce capacity to reduce memory usage when using gradio.State or returning updated components from functions. Defaults to 10000.
share_server_address: Use this to specify a custom FRP server and port for sharing Gradio apps (only applies if share=True). If not provided, will use the default FRP server at https://gradio.live. See https://github.com/huggingface/frp for more information.
share_server_protocol: Use this to specify the protocol to use for the share links. Defaults to "https", unless a custom share_server_address is provided, in which case it defaults to "http". If you are using a custom share_server_address and want to use https, you must set this to "https".
auth_dependency: A function that takes a FastAPI request and returns a string user ID or None. If the function returns None for a specific request, that user is not authorized to access the app (they will see a 401 Unauthorized response). To be used with external authentication systems like OAuth. Cannot be used with `auth`.
max_file_size: The maximum file size in bytes that can be uploaded. Can be a string of the form "<value><unit>", where value is any positive integer and unit is one of "b", "kb", "mb", "gb", "tb". If None, no limit is set.
enable_monitoring: Enables traffic monitoring of the app through the /monitoring endpoint. By default is None, which enables this endpoint. If explicitly True, will also print the monitoring URL to the console. If False, will disable monitoring altogether.
strict_cors: If True, prevents external domains from making requests to a Gradio server running on localhost. If False, allows requests to localhost that originate from localhost but also, crucially, from "null". This parameter should normally be True to prevent CSRF attacks but may need to be False when embedding a *locally-running Gradio app* using web components.
ssr_mode: If True, the Gradio app will be rendered using server-side rendering mode, which is typically more performant and provides better SEO, but this requires Node 20+ to be installed on the system. If False, the app will be rendered using client-side rendering mode. If None, will use GRADIO_SSR_MODE environment variable or default to False.
Returns:
app: FastAPI app object that is running the demo
local_url: Locally accessible link to the demo
share_url: Publicly accessible link to the demo (if share=True, otherwise None)
Example: (Blocks)
import gradio as gr
def reverse(text):
return text[::-1]
with gr.Blocks() as demo:
button = gr.Button(value="Reverse")
button.click(reverse, gr.Textbox(), gr.Textbox())
demo.launch(share=True, auth=("username", "password"))
Example: (Interface)
import gradio as gr
def reverse(text):
return text[::-1]
demo = gr.Interface(reverse, "text", "text")
demo.launch(share=True, auth=("username", "password"))
"""
from gradio.routes import App
if self._is_running_in_reload_thread:
# We have already launched the demo
return None, None, None # type: ignore
if not self.exited:
self.__exit__()
if auth is not None and auth_dependency is not None:
raise ValueError(
"You cannot provide both `auth` and `auth_dependency` in launch(). Please choose one."
)
if (
auth
and not callable(auth)
and not isinstance(auth[0], tuple)
and not isinstance(auth[0], list)
):
self.auth = [auth]
else:
self.auth = auth
if self.auth and not callable(self.auth):
if any(not authenticable[0] for authenticable in self.auth):
warnings.warn(
"You have provided an empty username in `auth`. Please provide a valid username."
)
if any(not authenticable[1] for authenticable in self.auth):
warnings.warn(
"You have provided an empty password in `auth`. Please provide a valid password."
)
self.auth_message = auth_message
self.show_error = show_error
self.height = height
self.width = width
self.favicon_path = favicon_path
self.ssl_verify = ssl_verify
self.state_session_capacity = state_session_capacity
if root_path is None:
self.root_path = os.environ.get("GRADIO_ROOT_PATH", "")
else:
self.root_path = root_path
self.show_api = show_api
if allowed_paths:
self.allowed_paths = allowed_paths
else:
allowed_paths_env = os.environ.get("GRADIO_ALLOWED_PATHS", "")
if len(allowed_paths_env) > 0:
self.allowed_paths = [
item.strip() for item in allowed_paths_env.split(",")
]
else:
self.allowed_paths = []
if blocked_paths:
self.blocked_paths = blocked_paths
else:
blocked_paths_env = os.environ.get("GRADIO_BLOCKED_PATHS", "")
if len(blocked_paths_env) > 0:
self.blocked_paths = [
item.strip() for item in blocked_paths_env.split(",")
]
else:
self.blocked_paths = []
if not isinstance(self.allowed_paths, list):
raise ValueError("`allowed_paths` must be a list of directories.")
if not isinstance(self.blocked_paths, list):
raise ValueError("`blocked_paths` must be a list of directories.")
self.validate_queue_settings()
self.max_file_size = utils._parse_file_size(max_file_size)
if self.dev_mode:
for block in self.blocks.values():
if block.key is None:
block.key = f"__{block._id}__"
self.config = self.get_config_file()
self.max_threads = max_threads
self._queue.max_thread_count = max_threads
self.ssr_mode = (
False
if wasm_utils.IS_WASM
else (
ssr_mode
if ssr_mode is not None
else os.getenv("GRADIO_SSR_MODE", "False").lower() == "true"
)
)
self.node_path = os.environ.get(
"GRADIO_NODE_PATH", "" if wasm_utils.IS_WASM else get_node_path()
)
if self.ssr_mode:
self.node_server_name, self.node_process, self.node_port = (
start_node_server(
server_name=node_server_name,
server_port=node_port,
node_path=self.node_path,
)
)
else:
self.node_server_name = self.node_port = self.node_process = None
# self.server_app is included for backwards compatibility
self.server_app = self.app = App.create_app(
self,
auth_dependency=auth_dependency,
app_kwargs=app_kwargs,
strict_cors=strict_cors,
ssr_mode=self.ssr_mode,
)
if self.is_running:
if not isinstance(self.local_url, str):
raise ValueError(f"Invalid local_url: {self.local_url}")
if not (quiet):
print(
"Rerunning server... use `close()` to stop if you need to change `launch()` parameters.\n----"
)
else:
if wasm_utils.IS_WASM:
server_name = "xxx"
server_port = 99999
local_url = ""
server = None
# In the Wasm environment, we only need the app object
# which the frontend app will directly communicate with through the Worker API,
# and we don't need to start a server.
wasm_utils.register_app(self.app)
else:
from gradio import http_server
(
server_name,
server_port,
local_url,
server,
) = http_server.start_server(
app=self.app,
server_name=server_name,
server_port=server_port,
ssl_keyfile=ssl_keyfile,
ssl_certfile=ssl_certfile,
ssl_keyfile_password=ssl_keyfile_password,
)
self.server_name = server_name
self.local_url = local_url
self.local_api_url = f"{self.local_url.rstrip('/')}{API_PREFIX}/"
self.server_port = server_port
self.server = server
self.is_running = True
self.is_colab = utils.colab_check()
self.is_kaggle = utils.kaggle_check()
self.share_server_address = share_server_address
self.share_server_protocol = share_server_protocol or (
"http" if share_server_address is not None else "https"
)
self.has_launched = True
self.protocol = (
"https"
if self.local_url.startswith("https") or self.is_colab
else "http"
)
if not wasm_utils.IS_WASM and not self.is_colab and not quiet:
s = (
strings.en["RUNNING_LOCALLY_SSR"]
if self.ssr_mode
else strings.en["RUNNING_LOCALLY"]
)
print(s.format(self.protocol, self.server_name, self.server_port))
self._queue.set_server_app(self.server_app)
if not wasm_utils.IS_WASM:
# Cannot run async functions in background other than app's scope.
# Workaround by triggering the app endpoint
httpx.get(
f"{self.local_api_url}startup-events",
verify=ssl_verify,
timeout=None,
)
else:
# NOTE: One benefit of the code above dispatching `startup_events()` via a self HTTP request is
# that `self._queue.start()` is called in another thread which is managed by the HTTP server, `uvicorn`
# so all the asyncio tasks created by the queue runs in an event loop in that thread and
# will be cancelled just by stopping the server.
# In contrast, in the Wasm env, we can't do that because `threading` is not supported and all async tasks will run in the same event loop, `pyodide.webloop.WebLoop` in the main thread.
# So we need to manually cancel them. See `self.close()`..
self.run_startup_events()
self.is_sagemaker = (
False # TODO: fix Gradio's behavior in sagemaker and other hosted notebooks
)
if share is None:
if self.is_colab:
if not quiet:
print(
"Running Gradio in a Colab notebook requires sharing enabled. Automatically setting `share=True` (you can turn this off by setting `share=False` in `launch()` explicitly).\n"
)
self.share = True
elif self.is_kaggle:
if not quiet:
print(
"Kaggle notebooks require sharing enabled. Setting `share=True` (you can turn this off by setting `share=False` in `launch()` explicitly).\n"
)
self.share = True
elif self.is_sagemaker:
if not quiet:
print(
"Sagemaker notebooks may require sharing enabled. Setting `share=True` (you can turn this off by setting `share=False` in `launch()` explicitly).\n"
)
self.share = True
else:
self.share = False
# GRADIO_SHARE environment variable for forcing 'share=True'
# GRADIO_SHARE=True => share=True
share_env = os.getenv("GRADIO_SHARE")
if share_env is not None and share_env.lower() == "true":
self.share = True
else:
self.share = share
if enable_monitoring:
print(
f"Monitoring URL: {self.local_url}monitoring/{self.app.analytics_key}"
)
self.enable_monitoring = enable_monitoring in [True, None]
# If running in a colab or not able to access localhost,
# a shareable link must be created.
if (
_frontend
and not wasm_utils.IS_WASM
and not networking.url_ok(self.local_url)
and not self.share
):
raise ValueError(
"When localhost is not accessible, a shareable link must be created. Please set share=True or check your proxy settings to allow access to localhost."
)
if self.is_colab and not quiet:
if debug:
print(strings.en["COLAB_DEBUG_TRUE"])
else:
print(strings.en["COLAB_DEBUG_FALSE"])
if not self.share:
print(strings.en["COLAB_WARNING"].format(self.server_port))
if self.share:
if self.space_id:
warnings.warn(
"Setting share=True is not supported on Hugging Face Spaces"
)
self.share = False
if wasm_utils.IS_WASM:
warnings.warn(
"Setting share=True is not supported in the Wasm environment"
)
self.share = False
if self.share:
try:
if self.share_url is None:
share_url = networking.setup_tunnel(
local_host=self.server_name,
local_port=self.server_port,
share_token=self.share_token,
share_server_address=self.share_server_address,
)
parsed_url = urlparse(share_url)
self.share_url = urlunparse(
(self.share_server_protocol,) + parsed_url[1:]
)
print(strings.en["SHARE_LINK_DISPLAY"].format(self.share_url))
if not (quiet):
print(strings.en["SHARE_LINK_MESSAGE"])
except Exception as e:
if self.analytics_enabled:
analytics.error_analytics("Not able to set up tunnel")
self.share_url = None
self.share = False
if isinstance(e, ChecksumMismatchError):
print(
strings.en["COULD_NOT_GET_SHARE_LINK_CHECKSUM"].format(
BINARY_PATH
)
)
elif Path(BINARY_PATH).exists():
print(strings.en["COULD_NOT_GET_SHARE_LINK"])
else:
print(
strings.en["COULD_NOT_GET_SHARE_LINK_MISSING_FILE"].format(
BINARY_PATH,
BINARY_URL,
BINARY_FILENAME,
BINARY_FOLDER,
)
)
else:
if not quiet and not wasm_utils.IS_WASM:
print(strings.en["PUBLIC_SHARE_TRUE"])
self.share_url = None
if inbrowser and not wasm_utils.IS_WASM:
link = self.share_url if self.share and self.share_url else self.local_url
webbrowser.open(link)
# Check if running in a Python notebook in which case, display inline
if inline is None:
inline = utils.ipython_check()
if inline:
try:
from IPython.display import HTML, Javascript, display # type: ignore
if self.share and self.share_url:
while not networking.url_ok(self.share_url):
time.sleep(0.25)
artifact = HTML(
f'<div><iframe src="{self.share_url}" width="{self.width}" height="{self.height}" allow="autoplay; camera; microphone; clipboard-read; clipboard-write;" frameborder="0" allowfullscreen></iframe></div>'
)
elif self.is_colab:
# modified from /usr/local/lib/python3.7/dist-packages/google/colab/output/_util.py within Colab environment
code = """(async (port, path, width, height, cache, element) => {
if (!google.colab.kernel.accessAllowed && !cache) {
return;
}
element.appendChild(document.createTextNode(''));
const url = await google.colab.kernel.proxyPort(port, {cache});
const external_link = document.createElement('div');
external_link.innerHTML = `
<div style="font-family: monospace; margin-bottom: 0.5rem">
Running on <a href=${new URL(path, url).toString()} target="_blank">
https://localhost:${port}${path}
</a>
</div>
`;
element.appendChild(external_link);
const iframe = document.createElement('iframe');
iframe.src = new URL(path, url).toString();
iframe.height = height;
iframe.allow = "autoplay; camera; microphone; clipboard-read; clipboard-write;"
iframe.width = width;
iframe.style.border = 0;
element.appendChild(iframe);
})""" + "({port}, {path}, {width}, {height}, {cache}, window.element)".format(
port=json.dumps(self.server_port),
path=json.dumps("/"),
width=json.dumps(self.width),
height=json.dumps(self.height),
cache=json.dumps(False),
)
artifact = Javascript(code)
else:
artifact = HTML(
f'<div><iframe src="{self.local_url}" width="{self.width}" height="{self.height}" allow="autoplay; camera; microphone; clipboard-read; clipboard-write;" frameborder="0" allowfullscreen></iframe></div>'
)
self.artifact = artifact
display(artifact)
except ImportError:
pass
if getattr(self, "analytics_enabled", False):
data = {
"launch_method": "browser" if inbrowser else "inline",
"is_google_colab": self.is_colab,
"is_sharing_on": self.share,
"is_space": self.space_id is not None,
"mode": self.mode,
}
analytics.launched_analytics(self, data)
is_in_interactive_mode = bool(getattr(sys, "ps1", sys.flags.interactive))
# Block main thread if debug==True
if (
debug
or int(os.getenv("GRADIO_DEBUG", "0")) == 1
and not wasm_utils.IS_WASM
or (
# Block main thread if running in a script to stop script from exiting
not prevent_thread_lock
and not is_in_interactive_mode
# In the Wasm env, we don't have to block the main thread because the server won't be shut down after the execution finishes.
# Moreover, we MUST NOT do it because there is only one thread in the Wasm env and blocking it will stop the subsequent code from running.
and not wasm_utils.IS_WASM
)
):
self.block_thread()
return TupleNoPrint((self.server_app, self.local_url, self.share_url)) # type: ignore
def integrate(
self,
comet_ml=None,
wandb: ModuleType | None = None,
mlflow: ModuleType | None = None,
) -> None:
"""
A catch-all method for integrating with other libraries. This method should be run after launch()
Parameters:
comet_ml: If a comet_ml Experiment object is provided, will integrate with the experiment and appear on Comet dashboard
wandb: If the wandb module is provided, will integrate with it and appear on WandB dashboard
mlflow: If the mlflow module is provided, will integrate with the experiment and appear on ML Flow dashboard
"""
analytics_integration = ""
if comet_ml is not None:
analytics_integration = "CometML"
comet_ml.log_other("Created from", "Gradio")
if self.share_url is not None:
comet_ml.log_text(f"gradio: {self.share_url}")
comet_ml.end()
elif self.local_url:
comet_ml.log_text(f"gradio: {self.local_url}")
comet_ml.end()
else:
raise ValueError("Please run `launch()` first.")
if wandb is not None:
analytics_integration = "WandB"
if self.share_url is not None:
wandb.log(
{
"Gradio panel": wandb.Html(
'<iframe src="'
+ self.share_url
+ '" width="'
+ str(self.width)
+ '" height="'
+ str(self.height)
+ '" frameBorder="0"></iframe>'
)
}
)
else:
print(
"The WandB integration requires you to "
"`launch(share=True)` first."
)
if mlflow is not None:
analytics_integration = "MLFlow"
if self.share_url is not None:
mlflow.log_param("Gradio Interface Share Link", self.share_url)
else:
mlflow.log_param("Gradio Interface Local Link", self.local_url)
if self.analytics_enabled and analytics_integration:
data = {"integration": analytics_integration}
analytics.integration_analytics(data)
def close(self, verbose: bool = True) -> None:
"""
Closes the Interface that was launched and frees the port.
"""
try:
if wasm_utils.IS_WASM:
# NOTE:
# Normally, queue-related async tasks whose async tasks are started at the `/queue/data` endpoint function)
# are running in an event loop in the server thread,
# so they will be cancelled by `self.server.close()` below.
# However, in the Wasm env, we don't have the `server` and
# all async tasks are running in the same event loop, `pyodide.webloop.WebLoop` in the main thread,
# so we have to cancel them explicitly so that these tasks won't run after a new app is launched.
self._queue._cancel_asyncio_tasks()
self.server_app._cancel_asyncio_tasks()
self._queue.close()
# set this before closing server to shut down heartbeats
self.is_running = False
self.app.stop_event.set()
if self.server:
self.server.close()
# So that the startup events (starting the queue)
# happen the next time the app is launched
self.app.startup_events_triggered = False
if verbose:
print(f"Closing server running on port: {self.server_port}")
except (AttributeError, OSError): # can't close if not running
pass
def block_thread(
self,
) -> None:
"""Block main thread until interrupted by user."""
try:
while True:
time.sleep(0.1)
except (KeyboardInterrupt, OSError):
print("Keyboard interruption in main thread... closing server.")
if self.server:
self.server.close()
for tunnel in CURRENT_TUNNELS:
tunnel.kill()
def attach_load_events(self):
"""Add a load event for every component whose initial value should be randomized."""
root_context = Context.root_block
if root_context:
for component in root_context.blocks.values():
if (
isinstance(component, components.Component)
and component.load_event_to_attach
):
load_fn, triggers, inputs = component.load_event_to_attach
has_target = len(triggers) > 0
triggers += [(self, "load")]
# Use set_event_trigger to avoid ambiguity between load class/instance method
dep = self.default_config.set_event_trigger(
[EventListenerMethod(*trigger) for trigger in triggers],
load_fn,
inputs,
component,
no_target=not has_target,
show_progress="hidden" if has_target else "full",
)[0]
component.load_event = dep.get_config()
def run_startup_events(self):
"""Events that should be run when the app containing this block starts up."""
self._queue.start()
# So that processing can resume in case the queue was stopped
self._queue.stopped = False
self.is_running = True
self.create_limiter()
async def run_extra_startup_events(self):
for startup_event in self.extra_startup_events:
await startup_event()
def get_api_info(self, all_endpoints: bool = False) -> dict[str, Any] | None:
"""
Gets the information needed to generate the API docs from a Blocks.
Parameters:
all_endpoints: If True, returns information about all endpoints, including those with show_api=False.
"""
config = self.config
api_info = {"named_endpoints": {}, "unnamed_endpoints": {}}
for fn in self.fns.values():
if not fn.fn or fn.api_name is False:
continue
if not all_endpoints and not fn.show_api:
continue
dependency_info = {"parameters": [], "returns": [], "show_api": fn.show_api}
fn_info = utils.get_function_params(fn.fn) # type: ignore
skip_endpoint = False
inputs = fn.inputs
for index, input_block in enumerate(inputs):
for component in config["components"]:
if component["id"] == input_block._id:
break
else:
skip_endpoint = True # if component not found, skip endpoint
break
type = component["props"]["name"]
if self.blocks[component["id"]].skip_api:
continue
label = component["props"].get("label", f"parameter_{input_block._id}")
comp = self.get_component(component["id"])
if not isinstance(comp, components.Component):
raise TypeError(f"{comp!r} is not a Component")
info = component.get("api_info_as_input", component.get("api_info"))
example = comp.example_inputs()
python_type = client_utils.json_schema_to_python_type(info)
# Since the clients use "api_name" and "fn_index" to designate the endpoint and
# "result_callbacks" to specify the callbacks, we need to make sure that no parameters
# have those names. Hence the final checks.
if (
fn.fn
and index < len(fn_info)
and fn_info[index][0]
not in ["api_name", "fn_index", "result_callbacks"]
):
parameter_name = fn_info[index][0]
else:
parameter_name = f"param_{index}"
# How default values are set for the client: if a component has an initial value, then that parameter
# is optional in the client and the initial value from the config is used as default in the client.
# If the component does not have an initial value, but if the corresponding argument in the predict function has
# a default value of None, then that parameter is also optional in the client and the None is used as default in the client.
if component["props"].get("value") is not None:
parameter_has_default = True
parameter_default = component["props"]["value"]
elif (
fn.fn
and index < len(fn_info)
and fn_info[index][1]
and fn_info[index][2] is None
):
parameter_has_default = True
parameter_default = None
else:
parameter_has_default = False
parameter_default = None
dependency_info["parameters"].append(
{
"label": label,
"parameter_name": parameter_name,
"parameter_has_default": parameter_has_default,
"parameter_default": parameter_default,
"type": info,
"python_type": {
"type": python_type,
"description": info.get("additional_description", ""),
},
"component": type.capitalize(),
"example_input": example,
}
)
outputs = fn.outputs
for o in outputs:
for component in config["components"]:
if component["id"] == o._id:
break
else:
skip_endpoint = True # if component not found, skip endpoint
break
type = component["props"]["name"]
if self.blocks[component["id"]].skip_api:
continue
label = component["props"].get("label", f"value_{o._id}")
comp = self.get_component(component["id"])
if not isinstance(comp, components.Component):
raise TypeError(f"{comp!r} is not a Component")
info = component.get("api_info_as_output", component["api_info"])
example = comp.example_inputs()
python_type = client_utils.json_schema_to_python_type(info)
dependency_info["returns"].append(
{
"label": label,
"type": info,
"python_type": {
"type": python_type,
"description": info.get("description", ""),
},
"component": type.capitalize(),
}
)
if not skip_endpoint:
api_info["named_endpoints"][f"/{fn.api_name}"] = dependency_info
return api_info