my_gradio / gradio /components /highlighted_text.py
xray918's picture
Upload folder using huggingface_hub
0ad74ed verified
raw
history blame
9.34 kB
"""gr.HighlightedText() component."""
from __future__ import annotations
from collections.abc import Callable, Sequence
from typing import TYPE_CHECKING, Any, Union
from gradio_client.documentation import document
from gradio.components.base import Component
from gradio.data_classes import GradioModel, GradioRootModel
from gradio.events import Events
if TYPE_CHECKING:
from gradio.components import Timer
class HighlightedToken(GradioModel):
token: str
class_or_confidence: Union[str, float, None] = None
class HighlightedTextData(GradioRootModel):
root: list[HighlightedToken]
@document()
class HighlightedText(Component):
"""
Displays text that contains spans that are highlighted by category or numerical value.
Demos: diff_texts
Guides: named-entity-recognition
"""
data_model = HighlightedTextData
EVENTS = [Events.change, Events.select]
def __init__(
self,
value: list[tuple[str, str | float | None]] | dict | Callable | None = None,
*,
color_map: dict[str, str]
| None = None, # Parameter moved to HighlightedText.style()
show_legend: bool = False,
show_inline_category: bool = True,
combine_adjacent: bool = False,
adjacent_separator: str = "",
label: str | None = None,
every: Timer | float | None = None,
inputs: Component | Sequence[Component] | set[Component] | None = None,
show_label: bool | None = None,
container: bool = True,
scale: int | None = None,
min_width: int = 160,
visible: bool = True,
elem_id: str | None = None,
elem_classes: list[str] | str | None = None,
render: bool = True,
key: int | str | None = None,
interactive: bool | None = None,
):
"""
Parameters:
value: Default value to show. If callable, the function will be called whenever the app loads to set the initial value of the component.
color_map: A dictionary mapping labels to colors. The colors may be specified as hex codes or by their names. For example: {"person": "red", "location": "#FFEE22"}
show_legend: whether to show span categories in a separate legend or inline.
show_inline_category: If False, will not display span category label. Only applies if show_legend=False and interactive=False.
combine_adjacent: If True, will merge the labels of adjacent tokens belonging to the same category.
adjacent_separator: Specifies the separator to be used between tokens if combine_adjacent is True.
label: the label for this component. Appears above the component and is also used as the header if there are a table of examples for this component. If None and used in a `gr.Interface`, the label will be the name of the parameter this component is assigned to.
every: Continously calls `value` to recalculate it if `value` is a function (has no effect otherwise). Can provide a Timer whose tick resets `value`, or a float that provides the regular interval for the reset Timer.
inputs: Components that are used as inputs to calculate `value` if `value` is a function (has no effect otherwise). `value` is recalculated any time the inputs change.
show_label: if True, will display label.
container: If True, will place the component in a container - providing some extra padding around the border.
scale: relative size compared to adjacent Components. For example if Components A and B are in a Row, and A has scale=2, and B has scale=1, A will be twice as wide as B. Should be an integer. scale applies in Rows, and to top-level Components in Blocks where fill_height=True.
min_width: minimum pixel width, will wrap if not sufficient screen space to satisfy this value. If a certain scale value results in this Component being narrower than min_width, the min_width parameter will be respected first.
visible: If False, component will be hidden.
elem_id: An optional string that is assigned as the id of this component in the HTML DOM. Can be used for targeting CSS styles.
elem_classes: An optional list of strings that are assigned as the classes of this component in the HTML DOM. Can be used for targeting CSS styles.
render: If False, component will not render be rendered in the Blocks context. Should be used if the intention is to assign event listeners now but render the component later.
key: if assigned, will be used to assume identity across a re-render. Components that have the same key across a re-render will have their value preserved.
interactive: If True, the component will be editable, and allow user to select spans of text and label them.
"""
self.color_map = color_map
self.show_legend = show_legend
self.show_inline_category = show_inline_category
self.combine_adjacent = combine_adjacent
self.adjacent_separator = adjacent_separator
super().__init__(
label=label,
every=every,
inputs=inputs,
show_label=show_label,
container=container,
scale=scale,
min_width=min_width,
visible=visible,
elem_id=elem_id,
elem_classes=elem_classes,
render=render,
key=key,
value=value,
interactive=interactive,
)
def example_payload(self) -> Any:
return [
{"token": "The", "class_or_confidence": None},
{"token": "quick", "class_or_confidence": "adj"},
]
def example_value(self) -> Any:
return [("The", None), ("quick", "adj"), ("brown", "adj"), ("fox", "noun")]
def preprocess(
self, payload: HighlightedTextData | None
) -> list[tuple[str, str | float | None]] | None:
"""
Parameters:
payload: An instance of HighlightedTextData
Returns:
Passes the value as a list of tuples as a `list[tuple]` into the function. Each `tuple` consists of a `str` substring of the text (so the entire text is included) and `str | float | None` label, which is the category or confidence of that substring.
"""
if payload is None:
return None
return payload.model_dump() # type: ignore
def postprocess(
self, value: list[tuple[str, str | float | None]] | dict | None
) -> HighlightedTextData | None:
"""
Parameters:
value: Expects a list of (word, category) tuples, or a dictionary of two keys: "text", and "entities", which itself is a list of dictionaries, each of which have the keys: "entity" (or "entity_group"), "start", and "end"
Returns:
An instance of HighlightedTextData
"""
if value is None:
return None
if isinstance(value, dict):
try:
text = value["text"]
entities = value["entities"]
except KeyError as ke:
raise ValueError(
"Expected a dictionary with keys 'text' and 'entities' "
"for the value of the HighlightedText component."
) from ke
if len(entities) == 0:
value = [(text, None)]
else:
list_format = []
index = 0
entities = sorted(entities, key=lambda x: x["start"])
for entity in entities:
list_format.append((text[index : entity["start"]], None))
entity_category = entity.get("entity") or entity.get("entity_group")
list_format.append(
(text[entity["start"] : entity["end"]], entity_category)
)
index = entity["end"]
list_format.append((text[index:], None))
value = list_format
if self.combine_adjacent:
output = []
running_text, running_category = None, None
for text, category in value:
if running_text is None:
running_text = text
running_category = category
elif category == running_category:
running_text += self.adjacent_separator + text
elif not text:
# Skip fully empty item, these get added in processing
# of dictionaries.
pass
else:
output.append((running_text, running_category))
running_text = text
running_category = category
if running_text is not None:
output.append((running_text, running_category))
return HighlightedTextData(
root=[
HighlightedToken(token=o[0], class_or_confidence=o[1])
for o in output
]
)
else:
return HighlightedTextData(
root=[
HighlightedToken(token=o[0], class_or_confidence=o[1])
for o in value
]
)