"""gr.Audio() component.""" from __future__ import annotations import dataclasses import io from collections.abc import Callable, Sequence from pathlib import Path from typing import TYPE_CHECKING, Any, Literal import anyio import httpx import numpy as np from gradio_client import handle_file from gradio_client import utils as client_utils from gradio_client.documentation import document from pydub import AudioSegment from gradio import processing_utils, utils, wasm_utils from gradio.components.base import Component, StreamingInput, StreamingOutput from gradio.data_classes import FileData, FileDataDict, MediaStreamChunk from gradio.events import Events from gradio.exceptions import Error if TYPE_CHECKING: from gradio.components import Timer @document() @dataclasses.dataclass class WaveformOptions: """ A dataclass for specifying options for the waveform display in the Audio component. An instance of this class can be passed into the `waveform_options` parameter of `gr.Audio`. Parameters: waveform_color: The color (as a hex string or valid CSS color) of the full waveform representing the amplitude of the audio. Defaults to a light gray color. waveform_progress_color: The color (as a hex string or valid CSS color) that the waveform fills with to as the audio plays. Defaults to the accent color. trim_region_color: The color (as a hex string or valid CSS color) of the trim region. Defaults to the accent color. show_recording_waveform: Whether to show the waveform when recording audio. Defaults to True. show_controls: Whether to show the standard HTML audio player below the waveform when recording audio or playing recorded audio. Defaults to False. skip_length: The percentage (between 0 and 100) of the audio to skip when clicking on the skip forward / skip backward buttons. Defaults to 5. sample_rate: The output sample rate (in Hz) of the audio after editing. Defaults to 44100. """ waveform_color: str | None = None waveform_progress_color: str | None = None trim_region_color: str | None = None show_recording_waveform: bool = True show_controls: bool = False skip_length: int | float = 5 sample_rate: int = 44100 @document() class Audio( StreamingInput, StreamingOutput, Component, ): """ Creates an audio component that can be used to upload/record audio (as an input) or display audio (as an output). Demos: generate_tone, reverse_audio Guides: real-time-speech-recognition """ EVENTS = [ Events.stream, Events.change, Events.clear, Events.play, Events.pause, Events.stop, Events.pause, Events.start_recording, Events.pause_recording, Events.stop_recording, Events.upload, Events.input, ] data_model = FileData def __init__( self, value: str | Path | tuple[int, np.ndarray] | Callable | None = None, *, sources: list[Literal["upload", "microphone"]] | Literal["upload", "microphone"] | None = None, type: Literal["numpy", "filepath"] = "numpy", label: str | None = None, every: Timer | float | None = None, inputs: Component | Sequence[Component] | set[Component] | None = None, show_label: bool | None = None, container: bool = True, scale: int | None = None, min_width: int = 160, interactive: bool | None = None, visible: bool = True, streaming: bool = False, elem_id: str | None = None, elem_classes: list[str] | str | None = None, render: bool = True, key: int | str | None = None, format: Literal["wav", "mp3"] | None = None, autoplay: bool = False, show_download_button: bool | None = None, show_share_button: bool | None = None, editable: bool = True, min_length: int | None = None, max_length: int | None = None, waveform_options: WaveformOptions | dict | None = None, loop: bool = False, recording: bool = False, ): """ Parameters: value: A path, URL, or [sample_rate, numpy array] tuple (sample rate in Hz, audio data as a float or int numpy array) for the default value that Audio component is going to take. If callable, the function will be called whenever the app loads to set the initial value of the component. sources: A list of sources permitted for audio. "upload" creates a box where user can drop an audio file, "microphone" creates a microphone input. The first element in the list will be used as the default source. If None, defaults to ["upload", "microphone"], or ["microphone"] if `streaming` is True. type: The format the audio file is converted to before being passed into the prediction function. "numpy" converts the audio to a tuple consisting of: (int sample rate, numpy.array for the data), "filepath" passes a str path to a temporary file containing the audio. label: the label for this component. Appears above the component and is also used as the header if there are a table of examples for this component. If None and used in a `gr.Interface`, the label will be the name of the parameter this component is assigned to. every: Continously calls `value` to recalculate it if `value` is a function (has no effect otherwise). Can provide a Timer whose tick resets `value`, or a float that provides the regular interval for the reset Timer. inputs: Components that are used as inputs to calculate `value` if `value` is a function (has no effect otherwise). `value` is recalculated any time the inputs change. show_label: if True, will display label. container: If True, will place the component in a container - providing some extra padding around the border. scale: Relative width compared to adjacent Components in a Row. For example, if Component A has scale=2, and Component B has scale=1, A will be twice as wide as B. Should be an integer. min_width: Minimum pixel width, will wrap if not sufficient screen space to satisfy this value. If a certain scale value results in this Component being narrower than min_width, the min_width parameter will be respected first. interactive: If True, will allow users to upload and edit an audio file. If False, can only be used to play audio. If not provided, this is inferred based on whether the component is used as an input or output. visible: If False, component will be hidden. streaming: If set to True when used in a `live` interface as an input, will automatically stream webcam feed. When used set as an output, takes audio chunks yield from the backend and combines them into one streaming audio output. elem_id: An optional string that is assigned as the id of this component in the HTML DOM. Can be used for targeting CSS styles. elem_classes: An optional list of strings that are assigned as the classes of this component in the HTML DOM. Can be used for targeting CSS styles. render: if False, component will not render be rendered in the Blocks context. Should be used if the intention is to assign event listeners now but render the component later. key: if assigned, will be used to assume identity across a re-render. Components that have the same key across a re-render will have their value preserved. format: the file extension with which to save audio files. Either 'wav' or 'mp3'. wav files are lossless but will tend to be larger files. mp3 files tend to be smaller. This parameter applies both when this component is used as an input (and `type` is "filepath") to determine which file format to convert user-provided audio to, and when this component is used as an output to determine the format of audio returned to the user. If None, no file format conversion is done and the audio is kept as is. In the case where output audio is returned from the prediction function as numpy array and no `format` is provided, it will be returned as a "wav" file. autoplay: Whether to automatically play the audio when the component is used as an output. Note: browsers will not autoplay audio files if the user has not interacted with the page yet. show_download_button: If True, will show a download button in the corner of the component for saving audio. If False, icon does not appear. By default, it will be True for output components and False for input components. show_share_button: If True, will show a share icon in the corner of the component that allows user to share outputs to Hugging Face Spaces Discussions. If False, icon does not appear. If set to None (default behavior), then the icon appears if this Gradio app is launched on Spaces, but not otherwise. editable: If True, allows users to manipulate the audio file if the component is interactive. Defaults to True. min_length: The minimum length of audio (in seconds) that the user can pass into the prediction function. If None, there is no minimum length. max_length: The maximum length of audio (in seconds) that the user can pass into the prediction function. If None, there is no maximum length. waveform_options: A dictionary of options for the waveform display. Options include: waveform_color (str), waveform_progress_color (str), show_controls (bool), skip_length (int), trim_region_color (str). Default is None, which uses the default values for these options. [See `gr.WaveformOptions` docs](#waveform-options). loop: If True, the audio will loop when it reaches the end and continue playing from the beginning. recording: If True, the audio component will be set to record audio from the microphone if the source is set to "microphone". Defaults to False. """ valid_sources: list[Literal["upload", "microphone"]] = ["upload", "microphone"] if sources is None: self.sources = ["microphone"] if streaming else valid_sources elif isinstance(sources, str) and sources in valid_sources: self.sources = [sources] elif isinstance(sources, list): self.sources = sources else: raise ValueError( f"`sources` must be a list consisting of elements in {valid_sources}" ) for source in self.sources: if source not in valid_sources: raise ValueError( f"`sources` must a list consisting of elements in {valid_sources}" ) valid_types = ["numpy", "filepath"] if type not in valid_types: raise ValueError( f"Invalid value for parameter `type`: {type}. Please choose from one of: {' '.join(valid_types)}" ) self.type = type self.streaming = streaming if self.streaming and "microphone" not in self.sources: raise ValueError( "Audio streaming only available if sources includes 'microphone'." ) valid_formats = ["wav", "mp3"] if format is not None and format.lower() not in valid_formats: raise ValueError( f"Invalid value for parameter `format`: {format}. Please choose from one of: {' '.join(valid_formats)}" ) self.format = format and format.lower() self.autoplay = autoplay self.loop = loop self.show_download_button = show_download_button self.show_share_button = ( (utils.get_space() is not None) if show_share_button is None else show_share_button ) self.editable = editable if waveform_options is None: self.waveform_options = WaveformOptions() elif isinstance(waveform_options, dict): self.waveform_options = WaveformOptions(**waveform_options) else: self.waveform_options = waveform_options self.min_length = min_length self.max_length = max_length self.recording = recording super().__init__( label=label, every=every, inputs=inputs, show_label=show_label, container=container, scale=scale, min_width=min_width, interactive=interactive, visible=visible, elem_id=elem_id, elem_classes=elem_classes, render=render, key=key, value=value, ) def example_payload(self) -> Any: return handle_file( "https://github.com/gradio-app/gradio/raw/main/test/test_files/audio_sample.wav" ) def example_value(self) -> Any: return "https://github.com/gradio-app/gradio/raw/main/test/test_files/audio_sample.wav" def preprocess( self, payload: FileData | None ) -> str | tuple[int, np.ndarray] | None: """ Parameters: payload: audio data as a FileData object, or None. Returns: passes audio as one of these formats (depending on `type`): a `str` filepath, or `tuple` of (sample rate in Hz, audio data as numpy array). If the latter, the audio data is a 16-bit `int` array whose values range from -32768 to 32767 and shape of the audio data array is (samples,) for mono audio or (samples, channels) for multi-channel audio. """ if payload is None: return payload if not payload.path: raise ValueError("payload path missing") needs_conversion = False original_suffix = Path(payload.path).suffix.lower() if self.format is not None and original_suffix != f".{self.format}": needs_conversion = True if self.min_length is not None or self.max_length is not None: sample_rate, data = processing_utils.audio_from_file(payload.path) duration = len(data) / sample_rate if self.min_length is not None and duration < self.min_length: raise Error( f"Audio is too short, and must be at least {self.min_length} seconds" ) if self.max_length is not None and duration > self.max_length: raise Error( f"Audio is too long, and must be at most {self.max_length} seconds" ) if self.type == "numpy": return processing_utils.audio_from_file(payload.path) elif self.type == "filepath": if not needs_conversion: return payload.path sample_rate, data = processing_utils.audio_from_file(payload.path) output_file = str(Path(payload.path).with_suffix(f".{self.format}")) assert self.format is not None # noqa: S101 processing_utils.audio_to_file( sample_rate, data, output_file, format=self.format ) return output_file else: raise ValueError( "Unknown type: " + str(self.type) + ". Please choose from: 'numpy', 'filepath'." ) def postprocess( self, value: str | Path | bytes | tuple[int, np.ndarray] | None ) -> FileData | bytes | None: """ Parameters: value: expects audio data in any of these formats: a `str` or `pathlib.Path` filepath or URL to an audio file, or a `bytes` object (recommended for streaming), or a `tuple` of (sample rate in Hz, audio data as numpy array). Note: if audio is supplied as a numpy array, the audio will be normalized by its peak value to avoid distortion or clipping in the resulting audio. Returns: FileData object, bytes, or None. """ orig_name = None if value is None: return None if isinstance(value, bytes): if self.streaming: return value file_path = processing_utils.save_bytes_to_cache( value, "audio", cache_dir=self.GRADIO_CACHE ) orig_name = Path(file_path).name elif isinstance(value, tuple): sample_rate, data = value file_path = processing_utils.save_audio_to_cache( data, sample_rate, format=self.format or "wav", cache_dir=self.GRADIO_CACHE, ) orig_name = Path(file_path).name elif isinstance(value, (str, Path)): original_suffix = Path(value).suffix.lower() if self.format is not None and original_suffix != f".{self.format}": sample_rate, data = processing_utils.audio_from_file(str(value)) file_path = processing_utils.save_audio_to_cache( data, sample_rate, format=self.format, cache_dir=self.GRADIO_CACHE ) else: file_path = str(value) orig_name = Path(file_path).name if Path(file_path).exists() else None else: raise ValueError(f"Cannot process {value} as Audio") return FileData(path=file_path, orig_name=orig_name) @staticmethod def _convert_to_adts(data: bytes): if wasm_utils.IS_WASM: raise wasm_utils.WasmUnsupportedError( "Audio streaming is not supported in the Wasm mode." ) segment = AudioSegment.from_file(io.BytesIO(data)) buffer = io.BytesIO() segment.export(buffer, format="adts") # ADTS is a container format for AAC aac_data = buffer.getvalue() return aac_data, len(segment) / 1000.0 @staticmethod async def covert_to_adts(data: bytes) -> tuple[bytes, float]: return await anyio.to_thread.run_sync(Audio._convert_to_adts, data) async def stream_output( self, value, output_id: str, first_chunk: bool, # noqa: ARG002 ) -> tuple[MediaStreamChunk | None, FileDataDict]: output_file: FileDataDict = { "path": output_id, "is_stream": True, "orig_name": "audio-stream.mp3", "meta": {"_type": "gradio.FileData"}, } if value is None: return None, output_file if isinstance(value, bytes): value, duration = await self.covert_to_adts(value) return { "data": value, "duration": duration, "extension": ".aac", }, output_file if client_utils.is_http_url_like(value["path"]): response = httpx.get(value["path"]) binary_data = response.content else: output_file["orig_name"] = value["orig_name"] file_path = value["path"] with open(file_path, "rb") as f: binary_data = f.read() value, duration = await self.covert_to_adts(binary_data) return {"data": value, "duration": duration, "extension": ".aac"}, output_file async def combine_stream( self, stream: list[bytes], desired_output_format: str | None = None, only_file=False, # noqa: ARG002 ) -> FileData: output_file = FileData( path=processing_utils.save_bytes_to_cache( b"".join(stream), "audio.mp3", cache_dir=self.GRADIO_CACHE ), is_stream=False, orig_name="audio-stream.mp3", ) if desired_output_format and desired_output_format != "mp3": new_path = Path(output_file.path).with_suffix(f".{desired_output_format}") AudioSegment.from_file(output_file.path).export( new_path, format=desired_output_format ) output_file.path = str(new_path) return output_file def process_example( self, value: tuple[int, np.ndarray] | str | Path | bytes | None ) -> str: if value is None: return "" elif isinstance(value, (str, Path)): return Path(value).name return "(audio)" def check_streamable(self): if ( self.sources is not None and "microphone" not in self.sources and self.streaming ): raise ValueError( "Audio streaming only available if source includes 'microphone'." )