"""gr.Label() component.""" from __future__ import annotations import json import operator from collections.abc import Callable, Sequence from pathlib import Path from typing import TYPE_CHECKING, Any, Optional, Union from gradio_client.documentation import document from gradio.components.base import Component from gradio.data_classes import GradioModel from gradio.events import Events if TYPE_CHECKING: from gradio.components import Timer class LabelConfidence(GradioModel): label: Optional[Union[str, int, float]] = None confidence: Optional[float] = None class LabelData(GradioModel): label: Optional[Union[str, int, float]] = None confidences: Optional[list[LabelConfidence]] = None @document() class Label(Component): """ Displays a classification label, along with confidence scores of top categories, if provided. As this component does not accept user input, it is rarely used as an input component. Guides: image-classification-in-pytorch, image-classification-in-tensorflow, image-classification-with-vision-transformers """ CONFIDENCES_KEY = "confidences" data_model = LabelData EVENTS = [Events.change, Events.select] def __init__( self, value: dict[str, float] | str | float | Callable | None = None, *, num_top_classes: int | None = None, label: str | None = None, every: Timer | float | None = None, inputs: Component | Sequence[Component] | set[Component] | None = None, show_label: bool | None = None, container: bool = True, scale: int | None = None, min_width: int = 160, visible: bool = True, elem_id: str | None = None, elem_classes: list[str] | str | None = None, render: bool = True, key: int | str | None = None, color: str | None = None, ): """ Parameters: value: Default value to show in the component. If a str or number is provided, simply displays the string or number. If a {Dict[str, float]} of classes and confidences is provided, displays the top class on top and the `num_top_classes` below, along with their confidence bars. If callable, the function will be called whenever the app loads to set the initial value of the component. num_top_classes: number of most confident classes to show. label: the label for this component. Appears above the component and is also used as the header if there are a table of examples for this component. If None and used in a `gr.Interface`, the label will be the name of the parameter this component is assigned to. every: Continously calls `value` to recalculate it if `value` is a function (has no effect otherwise). Can provide a Timer whose tick resets `value`, or a float that provides the regular interval for the reset Timer. inputs: Components that are used as inputs to calculate `value` if `value` is a function (has no effect otherwise). `value` is recalculated any time the inputs change. show_label: if True, will display label. container: If True, will place the component in a container - providing some extra padding around the border. scale: relative size compared to adjacent Components. For example if Components A and B are in a Row, and A has scale=2, and B has scale=1, A will be twice as wide as B. Should be an integer. scale applies in Rows, and to top-level Components in Blocks where fill_height=True. min_width: minimum pixel width, will wrap if not sufficient screen space to satisfy this value. If a certain scale value results in this Component being narrower than min_width, the min_width parameter will be respected first. visible: If False, component will be hidden. elem_id: An optional string that is assigned as the id of this component in the HTML DOM. Can be used for targeting CSS styles. elem_classes: An optional list of strings that are assigned as the classes of this component in the HTML DOM. Can be used for targeting CSS styles. render: If False, component will not render be rendered in the Blocks context. Should be used if the intention is to assign event listeners now but render the component later. key: if assigned, will be used to assume identity across a re-render. Components that have the same key across a re-render will have their value preserved. color: The background color of the label (either a valid css color name or hexadecimal string). """ self.num_top_classes = num_top_classes self.color = color super().__init__( label=label, every=every, inputs=inputs, show_label=show_label, container=container, scale=scale, min_width=min_width, visible=visible, elem_id=elem_id, elem_classes=elem_classes, render=render, key=key, value=value, ) def preprocess( self, payload: LabelData | None ) -> dict[str, float] | str | int | float | None: """ Parameters: payload: An instance of `LabelData` containing the label and confidences. Returns: Depending on the value, passes the label as a `str | int | float`, or the labels and confidences as a `dict[str, float]`. """ if payload is None: return None if payload.confidences is None: return payload.label return { d["label"]: d["confidence"] for d in payload.model_dump()["confidences"] } def postprocess( self, value: dict[str | float, float] | str | int | float | None ) -> LabelData | dict | None: """ Parameters: value: Expects a `dict[str, float]` of classes and confidences, or `str` with just the class or an `int | float` for regression outputs, or a `str` path to a .json file containing a json dictionary in one of the preceding formats. Returns: Returns a `LabelData` object with the label and confidences, or a `dict` of the same format, or a `str` or `int` or `float` if the input was a single label. """ if value is None or value == {}: return {} if isinstance(value, str) and value.endswith(".json") and Path(value).exists(): return LabelData(**json.loads(Path(value).read_text())) if isinstance(value, (str, float, int)): return LabelData(label=str(value)) if isinstance(value, dict): if "confidences" in value and isinstance(value["confidences"], dict): value = value["confidences"] value = {c["label"]: c["confidence"] for c in value} sorted_pred = sorted( value.items(), key=operator.itemgetter(1), reverse=True ) if self.num_top_classes is not None: sorted_pred = sorted_pred[: self.num_top_classes] return LabelData( label=sorted_pred[0][0], confidences=[ LabelConfidence(label=pred[0], confidence=pred[1]) for pred in sorted_pred ], ) raise ValueError( "The `Label` output interface expects one of: a string label, or an int label, a " "float label, or a dictionary whose keys are labels and values are confidences. " f"Instead, got a {type(value)}" ) def example_payload(self) -> Any: return { "label": "Cat", "confidences": [ {"label": "cat", "confidence": 0.9}, {"label": "dog", "confidence": 0.1}, ], } def example_value(self) -> Any: return {"cat": 0.9, "dog": 0.1}