from __future__ import annotations import json import warnings from collections.abc import Callable, Sequence, Set from typing import ( TYPE_CHECKING, Any, Literal, ) import pandas as pd from gradio_client.documentation import document from gradio.components.base import Component from gradio.data_classes import GradioModel from gradio.events import Events if TYPE_CHECKING: from gradio.components import Timer class PlotData(GradioModel): columns: list[str] data: list[list[Any]] datatypes: dict[str, Literal["quantitative", "nominal", "temporal"]] mark: str class NativePlot(Component): """ Creates a native Gradio plot component to display data from a pandas DataFrame. Supports interactivity and updates. Demos: native_plots """ EVENTS = [Events.select, Events.double_click] def __init__( self, value: pd.DataFrame | Callable | None = None, x: str | None = None, y: str | None = None, *, color: str | None = None, title: str | None = None, x_title: str | None = None, y_title: str | None = None, color_title: str | None = None, x_bin: str | float | None = None, y_aggregate: Literal["sum", "mean", "median", "min", "max", "count"] | None = None, color_map: dict[str, str] | None = None, x_lim: list[float] | None = None, y_lim: list[float] | None = None, x_label_angle: float = 0, y_label_angle: float = 0, x_axis_labels_visible: bool = True, caption: str | None = None, sort: Literal["x", "y", "-x", "-y"] | list[str] | None = None, height: int | None = None, label: str | None = None, show_label: bool | None = None, container: bool = True, scale: int | None = None, min_width: int = 160, every: Timer | float | None = None, inputs: Component | Sequence[Component] | Set[Component] | None = None, visible: bool = True, elem_id: str | None = None, elem_classes: list[str] | str | None = None, render: bool = True, key: int | str | None = None, **kwargs, ): """ Parameters: value: The pandas dataframe containing the data to display in the plot. x: Column corresponding to the x axis. Column can be numeric, datetime, or string/category. y: Column corresponding to the y axis. Column must be numeric. color: Column corresponding to series, visualized by color. Column must be string/category. title: The title to display on top of the chart. x_title: The title given to the x axis. By default, uses the value of the x parameter. y_title: The title given to the y axis. By default, uses the value of the y parameter. color_title: The title given to the color legend. By default, uses the value of color parameter. x_bin: Grouping used to cluster x values. If x column is numeric, should be number to bin the x values. If x column is datetime, should be string such as "1h", "15m", "10s", using "s", "m", "h", "d" suffixes. y_aggregate: Aggregation function used to aggregate y values, used if x_bin is provided or x is a string/category. Must be one of "sum", "mean", "median", "min", "max". color_map: Mapping of series to color names or codes. For example, {"success": "green", "fail": "#FF8888"}. height: The height of the plot in pixels. x_lim: A tuple or list containing the limits for the x-axis, specified as [x_min, x_max]. If x column is datetime type, x_lim should be timestamps. y_lim: A tuple of list containing the limits for the y-axis, specified as [y_min, y_max]. x_label_angle: The angle of the x-axis labels in degrees offset clockwise. y_label_angle: The angle of the y-axis labels in degrees offset clockwise. x_axis_labels_visible: Whether the x-axis labels should be visible. Can be hidden when many x-axis labels are present. caption: The (optional) caption to display below the plot. sort: The sorting order of the x values, if x column is type string/category. Can be "x", "y", "-x", "-y", or list of strings that represent the order of the categories. height: The height of the plot in pixels. label: The (optional) label to display on the top left corner of the plot. show_label: Whether the label should be displayed. container: If True, will place the component in a container - providing some extra padding around the border. scale: relative size compared to adjacent Components. For example if Components A and B are in a Row, and A has scale=2, and B has scale=1, A will be twice as wide as B. Should be an integer. scale applies in Rows, and to top-level Components in Blocks where fill_height=True. min_width: minimum pixel width, will wrap if not sufficient screen space to satisfy this value. If a certain scale value results in this Component being narrower than min_width, the min_width parameter will be respected first. every: Continously calls `value` to recalculate it if `value` is a function (has no effect otherwise). Can provide a Timer whose tick resets `value`, or a float that provides the regular interval for the reset Timer. inputs: Components that are used as inputs to calculate `value` if `value` is a function (has no effect otherwise). `value` is recalculated any time the inputs change. visible: Whether the plot should be visible. elem_id: An optional string that is assigned as the id of this component in the HTML DOM. Can be used for targeting CSS styles. elem_classes: An optional list of strings that are assigned as the classes of this component in the HTML DOM. Can be used for targeting CSS styles. render: If False, component will not render be rendered in the Blocks context. Should be used if the intention is to assign event listeners now but render the component later. key: if assigned, will be used to assume identity across a re-render. Components that have the same key across a re-render will have their value preserved. """ self.x = x self.y = y self.color = color self.title = title self.x_title = x_title self.y_title = y_title self.color_title = color_title self.x_bin = x_bin self.y_aggregate = y_aggregate self.color_map = color_map self.x_lim = x_lim self.y_lim = y_lim self.x_label_angle = x_label_angle self.y_label_angle = y_label_angle self.x_axis_labels_visible = x_axis_labels_visible self.caption = caption self.sort = sort self.height = height if label is None and show_label is None: show_label = False super().__init__( value=value, label=label, show_label=show_label, container=container, scale=scale, min_width=min_width, visible=visible, elem_id=elem_id, elem_classes=elem_classes, render=render, key=key, every=every, inputs=inputs, ) for key, val in kwargs.items(): if key == "color_legend_title": self.color_title = val if key in [ "stroke_dash", "overlay_point", "tooltip", "x_label_angle", "y_label_angle", "interactive", "show_actions_button", "color_legend_title", "width", ]: warnings.warn( f"Argument '{key}' has been deprecated.", DeprecationWarning ) def get_block_name(self) -> str: return "nativeplot" def get_mark(self) -> str: return "native" def preprocess(self, payload: PlotData | None) -> PlotData | None: """ Parameters: payload: The data to display in a line plot. Returns: The data to display in a line plot. """ return payload def postprocess(self, value: pd.DataFrame | dict | None) -> PlotData | None: """ Parameters: value: Expects a pandas DataFrame containing the data to display in the line plot. The DataFrame should contain at least two columns, one for the x-axis (corresponding to this component's `x` argument) and one for the y-axis (corresponding to `y`). Returns: The data to display in a line plot, in the form of an AltairPlotData dataclass, which includes the plot information as a JSON string, as well as the type of plot (in this case, "line"). """ # if None or update if value is None or isinstance(value, dict): return value def get_simplified_type(dtype): if pd.api.types.is_numeric_dtype(dtype): return "quantitative" elif pd.api.types.is_string_dtype( dtype ) or pd.api.types.is_categorical_dtype(dtype): return "nominal" elif pd.api.types.is_datetime64_any_dtype(dtype): return "temporal" else: raise ValueError(f"Unsupported data type: {dtype}") split_json = json.loads(value.to_json(orient="split", date_unit="ms")) datatypes = { col: get_simplified_type(value[col].dtype) for col in value.columns } return PlotData( columns=split_json["columns"], data=split_json["data"], datatypes=datatypes, mark=self.get_mark(), ) def example_payload(self) -> Any: return None def example_value(self) -> Any: import pandas as pd return pd.DataFrame({self.x: [1, 2, 3], self.y: [4, 5, 6]}) def api_info(self) -> dict[str, Any]: return {"type": {}, "description": "any valid json"} @document() class BarPlot(NativePlot): """ Creates a bar plot component to display data from a pandas DataFrame. Demos: bar_plot_demo """ def get_block_name(self) -> str: return "nativeplot" def get_mark(self) -> str: return "bar" @document() class LinePlot(NativePlot): """ Creates a line plot component to display data from a pandas DataFrame. Demos: line_plot_demo """ def get_block_name(self) -> str: return "nativeplot" def get_mark(self) -> str: return "line" @document() class ScatterPlot(NativePlot): """ Creates a scatter plot component to display data from a pandas DataFrame. Demos: scatter_plot_demo """ def get_block_name(self) -> str: return "nativeplot" def get_mark(self) -> str: return "point"