from __future__ import annotations import asyncio import base64 import hashlib import ipaddress import json import logging import os import shutil import socket import ssl import subprocess import tempfile import warnings from collections.abc import Awaitable, Callable, Coroutine from functools import lru_cache, wraps from io import BytesIO from pathlib import Path from typing import TYPE_CHECKING, Any, TypeVar from urllib.parse import urlparse import aiofiles import httpx import numpy as np from gradio_client import utils as client_utils from PIL import Image, ImageOps, ImageSequence, PngImagePlugin from gradio import utils, wasm_utils from gradio.context import LocalContext from gradio.data_classes import FileData, GradioModel, GradioRootModel, JsonData from gradio.exceptions import Error, InvalidPathError from gradio.route_utils import API_PREFIX from gradio.utils import abspath, get_hash_seed, get_upload_folder, is_in_or_equal with warnings.catch_warnings(): warnings.simplefilter("ignore") # Ignore pydub warning if ffmpeg is not installed from pydub import AudioSegment if wasm_utils.IS_WASM: import pyodide.http # type: ignore import urllib3 # NOTE: In the Wasm env, we use urllib3 to make HTTP requests. See https://github.com/gradio-app/gradio/issues/6837. class Urllib3ResponseSyncByteStream(httpx.SyncByteStream): def __init__(self, response: urllib3.HTTPResponse) -> None: self.response = response def __iter__(self): yield from self.response.stream(decode_content=True) class Urllib3Transport(httpx.BaseTransport): def __init__(self): self.pool = urllib3.PoolManager() def handle_request(self, request: httpx.Request) -> httpx.Response: url = str(request.url) method = str(request.method) headers = dict(request.headers) body = None if method in ["GET", "HEAD"] else request.read() response = self.pool.request( headers=headers, method=method, url=url, body=body, preload_content=False, # Stream the content ) # HTTPX's gzip decoder sometimes fails to decode the content in the Wasm env as https://github.com/gradio-app/gradio/pull/9333#issuecomment-2348048882, # so we avoid it by removing the content-encoding header passed to httpx.Response, # and handle the decoding in `Urllib3ResponseSyncByteStream.__iter__()` with `urllib3`'s implementation. response_headers = response.headers.copy() response_headers.discard("content-encoding") return httpx.Response( status_code=response.status, headers=response_headers, stream=Urllib3ResponseSyncByteStream(response), ) sync_transport = Urllib3Transport() class PyodideHttpResponseAsyncByteStream(httpx.AsyncByteStream): def __init__(self, response: pyodide.http.FetchResponse) -> None: self.response = response async def __aiter__(self): yield await self.response.bytes() class PyodideHttpTransport(httpx.AsyncBaseTransport): async def handle_async_request( self, request: httpx.Request, ) -> httpx.Response: url = str(request.url) method = request.method headers = dict(request.headers) # User-agent header is automatically set by the browser. # More importantly, setting it causes an error on FireFox where a preflight request is made and it leads to a CORS error. # Maybe related to https://bugzilla.mozilla.org/show_bug.cgi?id=1629921 del headers["user-agent"] body = None if method in ["GET", "HEAD"] else await request.aread() response = await pyodide.http.pyfetch( url, method=method, headers=headers, body=body ) return httpx.Response( status_code=response.status, headers=response.headers, stream=PyodideHttpResponseAsyncByteStream(response), ) async_transport = PyodideHttpTransport() else: sync_transport = None async_transport = None sync_client = httpx.Client(transport=sync_transport) log = logging.getLogger(__name__) if TYPE_CHECKING: from gradio.blocks import Block ######################### # GENERAL ######################### def to_binary(x: str | dict) -> bytes: """Converts a base64 string or dictionary to a binary string that can be sent in a POST.""" if isinstance(x, dict): if x.get("data"): base64str = x["data"] else: base64str = client_utils.encode_url_or_file_to_base64(x["path"]) else: base64str = x return base64.b64decode(extract_base64_data(base64str)) def extract_base64_data(x: str) -> str: """Just extracts the base64 data from a general base64 string.""" return x.rsplit(",", 1)[-1] ######################### # IMAGE PRE-PROCESSING ######################### def encode_plot_to_base64(plt, format: str = "png"): fmt = format or "png" with BytesIO() as output_bytes: plt.savefig(output_bytes, format=fmt) bytes_data = output_bytes.getvalue() base64_str = str(base64.b64encode(bytes_data), "utf-8") return f"data:image/{format or 'png'};base64,{base64_str}" def get_pil_exif_bytes(pil_image): if "exif" in pil_image.info: return pil_image.info["exif"] def get_pil_metadata(pil_image): # Copy any text-only metadata metadata = PngImagePlugin.PngInfo() for key, value in pil_image.info.items(): if isinstance(key, str) and isinstance(value, str): metadata.add_text(key, value) return metadata def encode_pil_to_bytes(pil_image, format="png"): with BytesIO() as output_bytes: if format.lower() == "gif": frames = [frame.copy() for frame in ImageSequence.Iterator(pil_image)] frames[0].save( output_bytes, format=format, save_all=True, append_images=frames[1:], loop=0, ) else: if format.lower() == "png": params = {"pnginfo": get_pil_metadata(pil_image)} else: exif = get_pil_exif_bytes(pil_image) params = {"exif": exif} if exif else {} pil_image.save(output_bytes, format, **params) return output_bytes.getvalue() hash_seed = get_hash_seed().encode("utf-8") def hash_file(file_path: str | Path, chunk_num_blocks: int = 128) -> str: sha = hashlib.sha256() sha.update(hash_seed) with open(file_path, "rb") as f: for chunk in iter(lambda: f.read(chunk_num_blocks * sha.block_size), b""): sha.update(chunk) return sha.hexdigest() def hash_url(url: str) -> str: sha = hashlib.sha256() sha.update(hash_seed) sha.update(url.encode("utf-8")) return sha.hexdigest() def hash_bytes(bytes: bytes): sha = hashlib.sha256() sha.update(hash_seed) sha.update(bytes) return sha.hexdigest() def hash_base64(base64_encoding: str, chunk_num_blocks: int = 128) -> str: sha = hashlib.sha256() sha.update(hash_seed) for i in range(0, len(base64_encoding), chunk_num_blocks * sha.block_size): data = base64_encoding[i : i + chunk_num_blocks * sha.block_size] sha.update(data.encode("utf-8")) return sha.hexdigest() def save_pil_to_cache( img: Image.Image, cache_dir: str, name: str = "image", format: str = "webp", ) -> str: bytes_data = encode_pil_to_bytes(img, format) temp_dir = Path(cache_dir) / hash_bytes(bytes_data) temp_dir.mkdir(exist_ok=True, parents=True) filename = str((temp_dir / f"{name}.{format}").resolve()) (temp_dir / f"{name}.{format}").resolve().write_bytes(bytes_data) return filename def save_img_array_to_cache( arr: np.ndarray, cache_dir: str, format: str = "webp" ) -> str: pil_image = Image.fromarray(_convert(arr, np.uint8, force_copy=False)) return save_pil_to_cache(pil_image, cache_dir, format=format) def save_audio_to_cache( data: np.ndarray, sample_rate: int, format: str, cache_dir: str ) -> str: temp_dir = Path(cache_dir) / hash_bytes(data.tobytes()) temp_dir.mkdir(exist_ok=True, parents=True) filename = str((temp_dir / f"audio.{format}").resolve()) audio_to_file(sample_rate, data, filename, format=format) return filename def save_bytes_to_cache(data: bytes, file_name: str, cache_dir: str) -> str: path = Path(cache_dir) / hash_bytes(data) path.mkdir(exist_ok=True, parents=True) path = path / Path(file_name).name path.write_bytes(data) return str(path.resolve()) def save_file_to_cache(file_path: str | Path, cache_dir: str) -> str: """Returns a temporary file path for a copy of the given file path if it does not already exist. Otherwise returns the path to the existing temp file.""" temp_dir = hash_file(file_path) temp_dir = Path(cache_dir) / temp_dir temp_dir.mkdir(exist_ok=True, parents=True) name = client_utils.strip_invalid_filename_characters(Path(file_path).name) full_temp_file_path = str(abspath(temp_dir / name)) if not Path(full_temp_file_path).exists(): shutil.copy2(file_path, full_temp_file_path) return full_temp_file_path # Always return these URLs as is, without checking to see if they resolve # to an internal IP address. This is because Hugging Face uses DNS splitting, # which means that requests from HF Spaces to HF Datasets or HF Models # may resolve to internal IP addresses even if they are publicly accessible. PUBLIC_HOSTNAME_WHITELIST = ["hf.co", "huggingface.co"] def is_public_ip(ip: str) -> bool: try: ip_obj = ipaddress.ip_address(ip) return not ( ip_obj.is_private or ip_obj.is_loopback or ip_obj.is_link_local or ip_obj.is_multicast or ip_obj.is_reserved ) except ValueError: return False T = TypeVar("T") def lru_cache_async(maxsize: int = 128): def decorator( async_func: Callable[..., Coroutine[Any, Any, T]], ) -> Callable[..., Awaitable[T]]: @lru_cache(maxsize=maxsize) @wraps(async_func) def wrapper(*args: Any, **kwargs: Any) -> Awaitable[T]: return asyncio.create_task(async_func(*args, **kwargs)) return wrapper return decorator @lru_cache_async(maxsize=256) async def async_resolve_hostname_google(hostname: str) -> list[str]: async with httpx.AsyncClient() as client: try: response_v4 = await client.get( f"https://dns.google/resolve?name={hostname}&type=A" ) response_v6 = await client.get( f"https://dns.google/resolve?name={hostname}&type=AAAA" ) ips = [] for response in [response_v4.json(), response_v6.json()]: ips.extend([answer["data"] for answer in response.get("Answer", [])]) return ips except Exception: return [] class AsyncSecureTransport(httpx.AsyncHTTPTransport): def __init__(self, verified_ip: str): self.verified_ip = verified_ip super().__init__() async def connect( self, hostname: str, port: int, _timeout: float | None = None, ssl_context: ssl.SSLContext | None = None, **_kwargs: Any, ): loop = asyncio.get_event_loop() sock = await loop.getaddrinfo(self.verified_ip, port) sock = socket.socket(sock[0][0], sock[0][1]) await loop.sock_connect(sock, (self.verified_ip, port)) if ssl_context: sock = ssl_context.wrap_socket(sock, server_hostname=hostname) return sock async def async_validate_url(url: str) -> str: hostname = urlparse(url).hostname if not hostname: raise ValueError(f"URL {url} does not have a valid hostname") try: loop = asyncio.get_event_loop() addrinfo = await loop.getaddrinfo(hostname, None) except socket.gaierror as e: raise ValueError(f"Unable to resolve hostname {hostname}: {e}") from e for family, _, _, _, sockaddr in addrinfo: ip_address = sockaddr[0] if family in (socket.AF_INET, socket.AF_INET6) and is_public_ip(ip_address): return ip_address if not wasm_utils.IS_WASM: for ip_address in await async_resolve_hostname_google(hostname): if is_public_ip(ip_address): return ip_address raise ValueError(f"Hostname {hostname} failed validation") async def async_get_with_secure_transport( url: str, trust_hostname: bool = False ) -> httpx.Response: if wasm_utils.IS_WASM: transport = PyodideHttpTransport() elif trust_hostname: transport = None else: verified_ip = await async_validate_url(url) transport = AsyncSecureTransport(verified_ip) async with httpx.AsyncClient(transport=transport) as client: return await client.get(url, follow_redirects=False) async def async_ssrf_protected_download(url: str, cache_dir: str) -> str: temp_dir = Path(cache_dir) / hash_url(url) temp_dir.mkdir(exist_ok=True, parents=True) filename = client_utils.strip_invalid_filename_characters(Path(url).name) full_temp_file_path = str(abspath(temp_dir / filename)) if Path(full_temp_file_path).exists(): return full_temp_file_path parsed_url = urlparse(url) hostname = parsed_url.hostname response = await async_get_with_secure_transport( url, trust_hostname=hostname in PUBLIC_HOSTNAME_WHITELIST ) while response.is_redirect: redirect_url = response.headers["Location"] redirect_parsed = urlparse(redirect_url) if not redirect_parsed.hostname: redirect_url = f"{parsed_url.scheme}://{hostname}{redirect_url}" response = await async_get_with_secure_transport(redirect_url) if response.status_code != 200: raise Exception(f"Failed to download file. Status code: {response.status_code}") async with aiofiles.open(full_temp_file_path, "wb") as f: async for chunk in response.aiter_bytes(): await f.write(chunk) return full_temp_file_path def unsafe_download(url: str, cache_dir: str) -> str: temp_dir = Path(cache_dir) / hash_url(url) temp_dir.mkdir(exist_ok=True, parents=True) filename = client_utils.strip_invalid_filename_characters(Path(url).name) full_temp_file_path = str(abspath(temp_dir / filename)) with ( sync_client.stream("GET", url, follow_redirects=True) as r, open(full_temp_file_path, "wb") as f, ): for chunk in r.iter_raw(): f.write(chunk) # print path and file size print( f"Downloaded {full_temp_file_path} ({os.path.getsize(full_temp_file_path)} bytes)" ) log.info( f"Downloaded {full_temp_file_path} ({os.path.getsize(full_temp_file_path)} bytes)" ) return full_temp_file_path def ssrf_protected_download(url: str, cache_dir: str) -> str: if wasm_utils.IS_WASM: return unsafe_download(url, cache_dir) else: return client_utils.synchronize_async( async_ssrf_protected_download, url, cache_dir ) # Custom components created with versions of gradio < 5.0 may be using the processing_utils.save_url_to_cache method, so we alias to ssrf_protected_download to preserve backwards-compatibility save_url_to_cache = ssrf_protected_download def save_base64_to_cache( base64_encoding: str, cache_dir: str, file_name: str | None = None ) -> str: """Converts a base64 encoding to a file and returns the path to the file if the file doesn't already exist. Otherwise returns the path to the existing file. """ temp_dir = hash_base64(base64_encoding) temp_dir = Path(cache_dir) / temp_dir temp_dir.mkdir(exist_ok=True, parents=True) guess_extension = client_utils.get_extension(base64_encoding) if file_name: file_name = client_utils.strip_invalid_filename_characters(file_name) elif guess_extension: file_name = f"file.{guess_extension}" else: file_name = "file" full_temp_file_path = str(abspath(temp_dir / file_name)) # type: ignore if not Path(full_temp_file_path).exists(): data, _ = client_utils.decode_base64_to_binary(base64_encoding) with open(full_temp_file_path, "wb") as fb: fb.write(data) return full_temp_file_path def move_resource_to_block_cache( url_or_file_path: str | Path | None, block: Block ) -> str | None: """This method has been replaced by Block.move_resource_to_block_cache(), but is left here for backwards compatibility for any custom components created in Gradio 4.2.0 or earlier. """ return block.move_resource_to_block_cache(url_or_file_path) def check_all_files_in_cache(data: JsonData): def _in_cache(d: dict): if ( (path := d.get("path", "")) and not client_utils.is_http_url_like(path) and not is_in_or_equal(path, get_upload_folder()) ): raise Error( f"File {path} is not in the cache folder and cannot be accessed." ) client_utils.traverse(data, _in_cache, client_utils.is_file_obj) def move_files_to_cache( data: Any, block: Block, postprocess: bool = False, check_in_upload_folder=False, keep_in_cache=False, ): """Move any files in `data` to cache and (optionally), adds URL prefixes (/file=...) needed to access the cached file. Also handles the case where the file is on an external Gradio app (/proxy=...). Runs after .postprocess() and before .preprocess(). Args: data: The input or output data for a component. Can be a dictionary or a dataclass block: The component whose data is being processed postprocess: Whether its running from postprocessing check_in_upload_folder: If True, instead of moving the file to cache, checks if the file is in already in cache (exception if not). keep_in_cache: If True, the file will not be deleted from cache when the server is shut down. """ def _move_to_cache(d: dict): payload = FileData(**d) # If the gradio app developer is returning a URL from # postprocess, it means the component can display a URL # without it being served from the gradio server # This makes it so that the URL is not downloaded and speeds up event processing if payload.url and postprocess and client_utils.is_http_url_like(payload.url): payload.path = payload.url elif utils.is_static_file(payload): pass elif not block.proxy_url: # If the file is on a remote server, do not move it to cache. if not client_utils.is_http_url_like(payload.path): _check_allowed(payload.path, check_in_upload_folder) if not payload.is_stream: temp_file_path = block.move_resource_to_block_cache(payload.path) if temp_file_path is None: raise ValueError("Did not determine a file path for the resource.") payload.path = temp_file_path if keep_in_cache: block.keep_in_cache.add(payload.path) url_prefix = ( f"{API_PREFIX}/stream/" if payload.is_stream else f"{API_PREFIX}/file=" ) if block.proxy_url: proxy_url = block.proxy_url.rstrip("/") url = f"{API_PREFIX}/proxy={proxy_url}{url_prefix}{payload.path}" elif client_utils.is_http_url_like(payload.path) or payload.path.startswith( f"{url_prefix}" ): url = f"{payload.path}" else: url = f"{url_prefix}{payload.path}" payload.url = url return payload.model_dump() if isinstance(data, (GradioRootModel, GradioModel)): data = data.model_dump() return client_utils.traverse( data, _move_to_cache, client_utils.is_file_obj_with_meta ) def _check_allowed(path: str | Path, check_in_upload_folder: bool): blocks = LocalContext.blocks.get() if blocks is None or not blocks.has_launched: return abs_path = utils.abspath(path) created_paths = [utils.get_upload_folder()] # if check_in_upload_folder=True, we are running this during pre-process # in which case only files in the upload_folder (cache_dir) are accepted if check_in_upload_folder: allowed_paths = [] else: allowed_paths = blocks.allowed_paths + [os.getcwd(), tempfile.gettempdir()] allowed, reason = utils.is_allowed_file( abs_path, blocked_paths=blocks.blocked_paths, allowed_paths=allowed_paths, created_paths=created_paths, ) if not allowed: msg = f"Cannot move {abs_path} to the gradio cache dir because " if reason == "in_blocklist": msg += f"it is located in one of the blocked_paths ({', '.join(blocks.blocked_paths)})." elif check_in_upload_folder: msg += "it was not uploaded by a user." else: msg += "it was not created by the application or it is not " msg += "located in either the current working directory or your system's temp directory. " msg += "To fix this error, please ensure your function returns files located in either " msg += f"the current working directory ({os.getcwd()}), your system's temp directory ({tempfile.gettempdir()}) " msg += f"or add {str(abs_path.parent)} to the allowed_paths parameter of launch()." raise InvalidPathError(msg) if ( utils.is_in_or_equal(abs_path, os.getcwd()) and abs_path.name.startswith(".") and not any( is_in_or_equal(path, allowed_path) for allowed_path in blocks.allowed_paths ) ): raise InvalidPathError( "Dotfiles located in the temporary directory cannot be moved to the cache for security reasons. " "If you'd like to specifically allow this file to be served, you can add it to the allowed_paths parameter of launch()." ) async def async_move_files_to_cache( data: Any, block: Block, postprocess: bool = False, check_in_upload_folder=False, keep_in_cache=False, ) -> dict: """Move any files in `data` to cache and (optionally), adds URL prefixes (/file=...) needed to access the cached file. Also handles the case where the file is on an external Gradio app (/proxy=...). Runs after .postprocess() and before .preprocess(). Args: data: The input or output data for a component. Can be a dictionary or a dataclass block: The component whose data is being processed postprocess: Whether its running from postprocessing check_in_upload_folder: If True, instead of moving the file to cache, checks if the file is in already in cache (exception if not). keep_in_cache: If True, the file will not be deleted from cache when the server is shut down. """ async def _move_to_cache(d: dict): payload = FileData(**d) # If the gradio app developer is returning a URL from # postprocess, it means the component can display a URL # without it being served from the gradio server # This makes it so that the URL is not downloaded and speeds up event processing if payload.url and postprocess and client_utils.is_http_url_like(payload.url): payload.path = payload.url elif utils.is_static_file(payload): pass elif not block.proxy_url: # If the file is on a remote server, do not move it to cache. if not client_utils.is_http_url_like(payload.path): _check_allowed(payload.path, check_in_upload_folder) if not payload.is_stream: temp_file_path = await block.async_move_resource_to_block_cache( payload.path ) if temp_file_path is None: raise ValueError("Did not determine a file path for the resource.") payload.path = temp_file_path if keep_in_cache: block.keep_in_cache.add(payload.path) url_prefix = ( f"{API_PREFIX}/stream/" if payload.is_stream else f"{API_PREFIX}/file=" ) if block.proxy_url: proxy_url = block.proxy_url.rstrip("/") url = f"{API_PREFIX}/proxy={proxy_url}{url_prefix}{payload.path}" elif client_utils.is_http_url_like(payload.path) or payload.path.startswith( f"{url_prefix}" ): url = payload.path else: url = f"{url_prefix}{payload.path}" payload.url = url return payload.model_dump() if isinstance(data, (GradioRootModel, GradioModel)): data = data.model_dump() return await client_utils.async_traverse( data, _move_to_cache, client_utils.is_file_obj_with_meta ) def add_root_url(data: dict | list, root_url: str, previous_root_url: str | None): def _add_root_url(file_dict: dict): if previous_root_url and file_dict["url"].startswith(previous_root_url): file_dict["url"] = file_dict["url"][len(previous_root_url) :] elif client_utils.is_http_url_like(file_dict["url"]): return file_dict file_dict["url"] = f'{root_url}{file_dict["url"]}' return file_dict return client_utils.traverse(data, _add_root_url, client_utils.is_file_obj_with_url) def resize_and_crop(img, size, crop_type="center"): """ Resize and crop an image to fit the specified size. args: size: `(width, height)` tuple. Pass `None` for either width or height to only crop and resize the other. crop_type: can be 'top', 'middle' or 'bottom', depending on this value, the image will cropped getting the 'top/left', 'middle' or 'bottom/right' of the image to fit the size. raises: ValueError: if an invalid `crop_type` is provided. """ if crop_type == "top": center = (0, 0) elif crop_type == "center": center = (0.5, 0.5) else: raise ValueError resize = list(size) if size[0] is None: resize[0] = img.size[0] if size[1] is None: resize[1] = img.size[1] return ImageOps.fit(img, resize, centering=center) # type: ignore ################## # Audio ################## def audio_from_file( filename: str, crop_min: float = 0, crop_max: float = 100 ) -> tuple[int, np.ndarray]: try: audio = AudioSegment.from_file(filename) except FileNotFoundError as e: isfile = Path(filename).is_file() msg = ( f"Cannot load audio from file: `{'ffprobe' if isfile else filename}` not found." + " Please install `ffmpeg` in your system to use non-WAV audio file formats" " and make sure `ffprobe` is in your PATH." if isfile else "" ) raise RuntimeError(msg) from e except OSError as e: if wasm_utils.IS_WASM: raise wasm_utils.WasmUnsupportedError( "Audio format conversion is not supported in the Wasm mode." ) from e raise e if crop_min != 0 or crop_max != 100: audio_start = len(audio) * crop_min / 100 audio_end = len(audio) * crop_max / 100 audio = audio[audio_start:audio_end] data = np.array(audio.get_array_of_samples()) if audio.channels > 1: data = data.reshape(-1, audio.channels) return audio.frame_rate, data def audio_to_file(sample_rate, data, filename, format="wav"): if format == "wav": data = convert_to_16_bit_wav(data) elif wasm_utils.IS_WASM: raise wasm_utils.WasmUnsupportedError( "Audio formats other than .wav are not supported in the Wasm mode." ) audio = AudioSegment( data.tobytes(), frame_rate=sample_rate, sample_width=data.dtype.itemsize, channels=(1 if len(data.shape) == 1 else data.shape[1]), ) file = audio.export(filename, format=format) file.close() # type: ignore def convert_to_16_bit_wav(data): # Based on: https://docs.scipy.org/doc/scipy/reference/generated/scipy.io.wavfile.write.html warning = "Trying to convert audio automatically from {} to 16-bit int format." if data.dtype in [np.float64, np.float32, np.float16]: warnings.warn(warning.format(data.dtype)) data = data / np.abs(data).max() data = data * 32767 data = data.astype(np.int16) elif data.dtype == np.int32: warnings.warn(warning.format(data.dtype)) data = data / 65536 data = data.astype(np.int16) elif data.dtype == np.int16: pass elif data.dtype == np.uint16: warnings.warn(warning.format(data.dtype)) data = data - 32768 data = data.astype(np.int16) elif data.dtype == np.uint8: warnings.warn(warning.format(data.dtype)) data = data * 257 - 32768 data = data.astype(np.int16) elif data.dtype == np.int8: warnings.warn(warning.format(data.dtype)) data = data * 256 data = data.astype(np.int16) else: raise ValueError( "Audio data cannot be converted automatically from " f"{data.dtype} to 16-bit int format." ) return data ################## # OUTPUT ################## def _convert(image, dtype, force_copy=False, uniform=False): """ Adapted from: https://github.com/scikit-image/scikit-image/blob/main/skimage/util/dtype.py#L510-L531 Convert an image to the requested data-type. Warnings are issued in case of precision loss, or when negative values are clipped during conversion to unsigned integer types (sign loss). Floating point values are expected to be normalized and will be clipped to the range [0.0, 1.0] or [-1.0, 1.0] when converting to unsigned or signed integers respectively. Numbers are not shifted to the negative side when converting from unsigned to signed integer types. Negative values will be clipped when converting to unsigned integers. Parameters ---------- image : ndarray Input image. dtype : dtype Target data-type. force_copy : bool, optional Force a copy of the data, irrespective of its current dtype. uniform : bool, optional Uniformly quantize the floating point range to the integer range. By default (uniform=False) floating point values are scaled and rounded to the nearest integers, which minimizes back and forth conversion errors. .. versionchanged :: 0.15 ``_convert`` no longer warns about possible precision or sign information loss. See discussions on these warnings at: https://github.com/scikit-image/scikit-image/issues/2602 https://github.com/scikit-image/scikit-image/issues/543#issuecomment-208202228 https://github.com/scikit-image/scikit-image/pull/3575 References ---------- .. [1] DirectX data conversion rules. https://msdn.microsoft.com/en-us/library/windows/desktop/dd607323%28v=vs.85%29.aspx .. [2] Data Conversions. In "OpenGL ES 2.0 Specification v2.0.25", pp 7-8. Khronos Group, 2010. .. [3] Proper treatment of pixels as integers. A.W. Paeth. In "Graphics Gems I", pp 249-256. Morgan Kaufmann, 1990. .. [4] Dirty Pixels. J. Blinn. In "Jim Blinn's corner: Dirty Pixels", pp 47-57. Morgan Kaufmann, 1998. """ dtype_range = { bool: (False, True), np.bool_: (False, True), float: (-1, 1), np.float16: (-1, 1), np.float32: (-1, 1), np.float64: (-1, 1), } if hasattr(np, "float_"): dtype_range[np.float_] = dtype_range[float] # type: ignore if hasattr(np, "bool8"): dtype_range[np.bool8] = dtype_range[np.bool_] # type: ignore def _dtype_itemsize(itemsize, *dtypes): """Return first of `dtypes` with itemsize greater than `itemsize` Parameters ---------- itemsize: int The data type object element size. Other Parameters ---------------- *dtypes: Any Object accepted by `np.dtype` to be converted to a data type object Returns ------- dtype: data type object First of `dtypes` with itemsize greater than `itemsize`. """ return next(dt for dt in dtypes if np.dtype(dt).itemsize >= itemsize) def _dtype_bits(kind, bits, itemsize=1): """Return dtype of `kind` that can store a `bits` wide unsigned int Parameters: kind: str Data type kind. bits: int Desired number of bits. itemsize: int The data type object element size. Returns ------- dtype: data type object Data type of `kind` that can store a `bits` wide unsigned int """ s = next( i for i in (itemsize,) + (2, 4, 8) if bits < (i * 8) or (bits == (i * 8) and kind == "u") ) return np.dtype(kind + str(s)) def _scale(a, n, m, copy=True): """Scale an array of unsigned/positive integers from `n` to `m` bits. Numbers can be represented exactly only if `m` is a multiple of `n`. Parameters ---------- a : ndarray Input image array. n : int Number of bits currently used to encode the values in `a`. m : int Desired number of bits to encode the values in `out`. copy : bool, optional If True, allocates and returns new array. Otherwise, modifies `a` in place. Returns ------- out : array Output image array. Has the same kind as `a`. """ kind = a.dtype.kind if n > m and a.max() < 2**m: return a.astype(_dtype_bits(kind, m)) elif n == m: return a.copy() if copy else a elif n > m: # downscale with precision loss if copy: b = np.empty(a.shape, _dtype_bits(kind, m)) np.floor_divide(a, 2 ** (n - m), out=b, dtype=a.dtype, casting="unsafe") return b else: a //= 2 ** (n - m) return a elif m % n == 0: # exact upscale to a multiple of `n` bits if copy: b = np.empty(a.shape, _dtype_bits(kind, m)) np.multiply(a, (2**m - 1) // (2**n - 1), out=b, dtype=b.dtype) return b else: a = a.astype(_dtype_bits(kind, m, a.dtype.itemsize), copy=False) a *= (2**m - 1) // (2**n - 1) return a else: # upscale to a multiple of `n` bits, # then downscale with precision loss o = (m // n + 1) * n if copy: b = np.empty(a.shape, _dtype_bits(kind, o)) np.multiply(a, (2**o - 1) // (2**n - 1), out=b, dtype=b.dtype) b //= 2 ** (o - m) return b else: a = a.astype(_dtype_bits(kind, o, a.dtype.itemsize), copy=False) a *= (2**o - 1) // (2**n - 1) a //= 2 ** (o - m) return a image = np.asarray(image) dtypeobj_in = image.dtype dtypeobj_out = np.dtype("float64") if dtype is np.floating else np.dtype(dtype) dtype_in = dtypeobj_in.type dtype_out = dtypeobj_out.type kind_in = dtypeobj_in.kind kind_out = dtypeobj_out.kind itemsize_in = dtypeobj_in.itemsize itemsize_out = dtypeobj_out.itemsize # Below, we do an `issubdtype` check. Its purpose is to find out # whether we can get away without doing any image conversion. This happens # when: # # - the output and input dtypes are the same or # - when the output is specified as a type, and the input dtype # is a subclass of that type (e.g. `np.floating` will allow # `float32` and `float64` arrays through) if hasattr(np, "obj2sctype"): is_subdtype = np.issubdtype(dtype_in, np.obj2sctype(dtype)) # type: ignore else: is_subdtype = np.issubdtype(dtype_in, dtypeobj_out.type) if is_subdtype: if force_copy: image = image.copy() return image if kind_in in "ui": imin_in = np.iinfo(dtype_in).min imax_in = np.iinfo(dtype_in).max if kind_out in "ui": imin_out = np.iinfo(dtype_out).min # type: ignore imax_out = np.iinfo(dtype_out).max # type: ignore # any -> binary if kind_out == "b": return image > dtype_in(dtype_range[dtype_in][1] / 2) # binary -> any if kind_in == "b": result = image.astype(dtype_out) if kind_out != "f": result *= dtype_out(dtype_range[dtype_out][1]) return result # float -> any if kind_in == "f": if kind_out == "f": # float -> float return image.astype(dtype_out) if np.min(image) < -1.0 or np.max(image) > 1.0: raise ValueError("Images of type float must be between -1 and 1.") # floating point -> integer # use float type that can represent output integer type computation_type = _dtype_itemsize( itemsize_out, dtype_in, np.float32, np.float64 ) if not uniform: if kind_out == "u": image_out = np.multiply(image, imax_out, dtype=computation_type) # type: ignore else: image_out = np.multiply( image, (imax_out - imin_out) / 2, # type: ignore dtype=computation_type, ) image_out -= 1.0 / 2.0 np.rint(image_out, out=image_out) np.clip(image_out, imin_out, imax_out, out=image_out) # type: ignore elif kind_out == "u": image_out = np.multiply(image, imax_out + 1, dtype=computation_type) # type: ignore np.clip(image_out, 0, imax_out, out=image_out) # type: ignore else: image_out = np.multiply( image, (imax_out - imin_out + 1.0) / 2.0, # type: ignore dtype=computation_type, ) np.floor(image_out, out=image_out) np.clip(image_out, imin_out, imax_out, out=image_out) # type: ignore return image_out.astype(dtype_out) # signed/unsigned int -> float if kind_out == "f": # use float type that can exactly represent input integers computation_type = _dtype_itemsize( itemsize_in, dtype_out, np.float32, np.float64 ) if kind_in == "u": # using np.divide or np.multiply doesn't copy the data # until the computation time image = np.multiply(image, 1.0 / imax_in, dtype=computation_type) # type: ignore # DirectX uses this conversion also for signed ints # if imin_in: # np.maximum(image, -1.0, out=image) else: image = np.add(image, 0.5, dtype=computation_type) image *= 2 / (imax_in - imin_in) # type: ignore return np.asarray(image, dtype_out) # unsigned int -> signed/unsigned int if kind_in == "u": if kind_out == "i": # unsigned int -> signed int image = _scale(image, 8 * itemsize_in, 8 * itemsize_out - 1) return image.view(dtype_out) else: # unsigned int -> unsigned int return _scale(image, 8 * itemsize_in, 8 * itemsize_out) # signed int -> unsigned int if kind_out == "u": image = _scale(image, 8 * itemsize_in - 1, 8 * itemsize_out) result = np.empty(image.shape, dtype_out) np.maximum(image, 0, out=result, dtype=image.dtype, casting="unsafe") return result # signed int -> signed int if itemsize_in > itemsize_out: return _scale(image, 8 * itemsize_in - 1, 8 * itemsize_out - 1) image = image.astype(_dtype_bits("i", itemsize_out * 8)) image -= imin_in # type: ignore image = _scale(image, 8 * itemsize_in, 8 * itemsize_out, copy=False) image += imin_out # type: ignore return image.astype(dtype_out) def ffmpeg_installed() -> bool: if wasm_utils.IS_WASM: # TODO: Support ffmpeg in WASM return False return shutil.which("ffmpeg") is not None def video_is_playable(video_filepath: str) -> bool: """Determines if a video is playable in the browser. A video is playable if it has a playable container and codec. .mp4 -> h264 .webm -> vp9 .ogg -> theora """ from ffmpy import FFprobe, FFRuntimeError try: container = Path(video_filepath).suffix.lower() probe = FFprobe( global_options="-show_format -show_streams -select_streams v -print_format json", inputs={video_filepath: None}, ) output = probe.run(stderr=subprocess.PIPE, stdout=subprocess.PIPE) output = json.loads(output[0]) video_codec = output["streams"][0]["codec_name"] return (container, video_codec) in [ (".mp4", "h264"), (".ogg", "theora"), (".webm", "vp9"), ] # If anything goes wrong, assume the video can be played to not convert downstream except (FFRuntimeError, IndexError, KeyError): return True def convert_video_to_playable_mp4(video_path: str) -> str: """Convert the video to mp4. If something goes wrong return the original video.""" from ffmpy import FFmpeg, FFRuntimeError try: with tempfile.NamedTemporaryFile(delete=False) as tmp_file: output_path = Path(video_path).with_suffix(".mp4") shutil.copy2(video_path, tmp_file.name) # ffmpeg will automatically use h264 codec (playable in browser) when converting to mp4 ff = FFmpeg( inputs={str(tmp_file.name): None}, outputs={str(output_path): None}, global_options="-y -loglevel quiet", ) ff.run() except FFRuntimeError as e: print(f"Error converting video to browser-playable format {str(e)}") output_path = video_path finally: # Remove temp file os.remove(tmp_file.name) # type: ignore return str(output_path) def get_video_length(video_path: str | Path): if wasm_utils.IS_WASM: raise wasm_utils.WasmUnsupportedError( "Video duration is not supported in the Wasm mode." ) duration = subprocess.check_output( [ "ffprobe", "-i", str(video_path), "-show_entries", "format=duration", "-v", "quiet", "-of", "csv={}".format("p=0"), ] ) duration_str = duration.decode("utf-8").strip() duration_float = float(duration_str) return duration_float