# 实时语音识别 Related spaces: https://huggingface.co/spaces/abidlabs/streaming-asr-paused, https://huggingface.co/spaces/abidlabs/full-context-asr Tags: ASR, SPEECH, STREAMING ## 介绍 自动语音识别(ASR)是机器学习中非常重要且蓬勃发展的领域,它将口语转换为文本。ASR 算法几乎在每部智能手机上都有运行,并越来越多地嵌入到专业工作流程中,例如护士和医生的数字助手。由于 ASR 算法是直接面向客户和最终用户设计的,因此在面对各种语音模式(不同的口音、音调和背景音频条件)时,验证它们的行为是否符合预期非常重要。 使用 `gradio`,您可以轻松构建一个 ASR 模型的演示,并与测试团队共享,或通过设备上的麦克风进行自行测试。 本教程将展示如何使用预训练的语音识别模型并在 Gradio 界面上部署。我们将从一个 **full-context 全文**模型开始,其中用户在进行预测之前要说完整段音频。然后,我们将调整演示以使其变为 **streaming 流式**,这意味着音频模型将在您说话时将语音转换为文本。我们创建的流式演示将如下所示(在下方尝试或[在新标签页中打开](https://huggingface.co/spaces/abidlabs/streaming-asr-paused)): 实时 ASR 本质上是*有状态的*,即模型的预测结果取决于用户先前说的单词。因此,在本教程中,我们还将介绍如何在 Gradio 演示中使用 **state**。 ### 先决条件 确保您已经[安装](/getting_started)了 `gradio` Python 包。您还需要一个预训练的语音识别模型。在本教程中,我们将从两个 ASR 库构建演示: - Transformers(为此,`pip install transformers` 和 `pip install torch`)\* DeepSpeech(`pip install deepspeech==0.8.2`) 确保您至少安装了其中之一,以便您可以跟随本教程操作。如果您尚未安装 `ffmpeg`,请在[系统上下载并安装](https://www.ffmpeg.org/download.html),以便从麦克风处理文件。 下面是构建实时语音识别(ASR)应用程序的步骤: 1. [设置 Transformers ASR 模型](#1-set-up-the-transformers-asr-model) 2. [使用 Transformers 创建一个全文 ASR 演示] (#2-create-a-full-context-asr-demo-with-transformers) 3. [使用 Transformers 创建一个流式 ASR 演示](#3-create-a-streaming-asr-demo-with-transformers) 4. [使用 DeepSpeech 创建一个流式 ASR 演示](#4-create-a-streaming-asr-demo-with-deepspeech) ## 1. 设置 Transformers ASR 模型 首先,您需要拥有一个 ASR 模型,您可以自己训练,或者需要下载一个预训练模型。在本教程中,我们将使用 Hugging Face 模型的预训练 ASR 模型 `Wav2Vec2`。 以下是从 Hugging Face 的 `transformers` 加载 `Wav2Vec2` 的代码: ```python from transformers import pipeline p = pipeline("automatic-speech-recognition") ``` 就是这样!默认情况下,自动语音识别模型管道会加载 Facebook 的 `facebook/wav2vec2-base-960h` 模型。 ## 2. 使用 Transformers 创建一个全文 ASR 演示 我们将首先创建一个*全文*ASR 演示,其中用户在使用 ASR 模型进行预测之前说完整段音频。使用 Gradio 非常简单,我们只需在上面的 `pipeline` 对象周围创建一个函数。 我们将使用 `gradio` 内置的 `Audio` 组件,配置从用户的麦克风接收输入并返回录制音频的文件路径。输出组件将是一个简单的 `Textbox`。 ```python import gradio as gr def transcribe(audio): text = p(audio)["text"] return text gr.Interface( fn=transcribe, inputs=gr.Audio(sources=["microphone"], type="filepath"), outputs="text").launch() ``` 那么这里发生了什么?`transcribe` 函数接受一个参数 `audio`,它是用户录制的音频文件的文件路径。`pipeline` 对象期望一个文件路径,并将其转换为文本,然后返回到前端并在文本框中显示。 让我们看看它的效果吧!(录制一段短音频并点击提交,或[在新标签页打开](https://huggingface.co/spaces/abidlabs/full-context-asr)): ## 3. 使用 Transformers 创建一个流式 ASR 演示 太棒了!我们已经构建了一个对短音频剪辑效果良好的 ASR 模型。但是,如果您正在记录较长的音频剪辑,则可能需要一个*流式*界面,即在用户说话时逐句转录音频,而不仅仅在最后一次全部转录。 好消息是,我们可以很容易地调整刚刚创建的演示,使其成为流式的,使用相同的 `Wav2Vec2` 模型。 最大的变化是我们现在必须引入一个 `state` 参数,它保存到目前为止*转录的音频*。这样,我们只需处理最新的音频块,并将其简单地追加到先前转录的音频中。 在向 Gradio 演示添加状态时,您需要完成 3 件事: - 在函数中添加 `state` 参数* 在函数末尾返回更新后的 `state`* 在 `Interface` 的 `inputs` 和 `outputs` 中添加 `"state"` 组件 以下是代码示例: ```python def transcribe(audio, state=""): text = p(audio)["text"] state += text + " " return state, state # Set the starting state to an empty string gr.Interface( fn=transcribe, inputs=[ gr.Audio(sources=["microphone"], type="filepath", streaming=True), "state" ], outputs=[ "textbox", "state" ], live=True).launch() ``` 请注意,我们还进行了另一个更改,即我们设置了 `live=True`。这使得 Gradio 接口保持持续运行,因此它可以自动转录音频,而无需用户反复点击提交按钮。 让我们看看它的效果(在下方尝试或[在新标签页中打开](https://huggingface.co/spaces/abidlabs/streaming-asr))! 你可能注意到的一件事是,由于音频块非常小,所以转录质量下降了,它们缺乏正确转录所需的上下文。此问题的“hacky”解决方法是简单地增加 `transcribe()` 函数的运行时间,以便处理更长的音频块。我们可以通过在函数中添加 `time.sleep()` 来实现这一点,如下所示(接下来我们将看到一个正确的解决方法) ```python from transformers import pipeline import gradio as gr import time p = pipeline("automatic-speech-recognition") def transcribe(audio, state=""): time.sleep(2) text = p(audio)["text"] state += text + " " return state, state gr.Interface( fn=transcribe, inputs=[ gr.Audio(sources=["microphone"], type="filepath", streaming=True), "state" ], outputs=[ "textbox", "state" ], live=True).launch() ``` 尝试下面的演示,查看差异(或[在新标签页中打开](https://huggingface.co/spaces/abidlabs/streaming-asr-paused))! ## 4. 使用 DeepSpeech 创建流式 ASR 演示 您不仅限于使用 `transformers` 库中的 ASR 模型 - 您可以使用自己的模型或其他库中的模型。`DeepSpeech` 库包含专门用于处理流式音频数据的模型。这些模型在处理流式数据时表现非常好,因为它们能够考虑到先前的音频块在进行预测时产生的影响。 深入研究 DeepSpeech 库超出了本指南的范围(可以在[此处查看其优秀的文档](https://deepspeech.readthedocs.io/en/r0.9/)),但是您可以像使用 Transformer ASR 模型一样,使用 DeepSpeech ASR 模型使用类似的方法使用 Gradio。 下面是一个完整的示例(在 Linux 上): 首先通过终端安装 DeepSpeech 库并下载预训练模型: ```bash wget https://github.com/mozilla/DeepSpeech/releases/download/v0.8.2/deepspeech-0.8.2-models.pbmm wget https://github.com/mozilla/DeepSpeech/releases/download/v0.8.2/deepspeech-0.8.2-models.scorer apt install libasound2-dev portaudio19-dev libportaudio2 libportaudiocpp0 ffmpeg pip install deepspeech==0.8.2 ``` 然后,创建与之前相似的 `transcribe()` 函数: ```python from deepspeech import Model import numpy as np model_file_path = "deepspeech-0.8.2-models.pbmm" lm_file_path = "deepspeech-0.8.2-models.scorer" beam_width = 100 lm_alpha = 0.93 lm_beta = 1.18 model = Model(model_file_path) model.enableExternalScorer(lm_file_path) model.setScorerAlphaBeta(lm_alpha, lm_beta) model.setBeamWidth(beam_width) def reformat_freq(sr, y): if sr not in ( 48000, 16000, ): # Deepspeech only supports 16k, (we convert 48k -> 16k) raise ValueError("Unsupported rate", sr) if sr == 48000: y = ( ((y / max(np.max(y), 1)) * 32767) .reshape((-1, 3)) .mean(axis=1) .astype("int16") ) sr = 16000 return sr, y def transcribe(speech, stream): _, y = reformat_freq(*speech) if stream is None: stream = model.createStream() stream.feedAudioContent(y) text = stream.intermediateDecode() return text, stream ``` 然后,如前所述创建一个 Gradio 接口(唯一的区别是返回类型应该是 `numpy` 而不是 `filepath` 以与 DeepSpeech 模型兼容) ```python import gradio as gr gr.Interface( fn=transcribe, inputs=[ gr.Audio(sources=["microphone"], type="numpy"), "state" ], outputs= [ "text", "state" ], live=True).launch() ``` 运行所有这些应该允许您使用一个漂亮的 GUI 部署实时 ASR 模型。尝试一下,看它在您那里运行得有多好。 --- 你已经完成了!这就是构建用于 ASR 模型的基于 Web 的 GUI 所需的所有代码。 有趣的提示:您只需在 `launch()` 中设置 `share=True`,即可即时与他人共享 ASR 模型。