xsa-dev's picture
rewrite
55c0bb6
raw
history blame
1.98 kB
import gradio as gr
import copy
import time
import ctypes # to run on C api directly
import llama_cpp
from llama_cpp import Llama
from huggingface_hub import hf_hub_download # load from huggingfaces
llm = Llama(model_path=hf_hub_download(
repo_id="TheBloke/Llama-2-7B-Chat-GGML",
filename="llama-2-7b-chat.ggmlv3.q4_1.bin"), n_ctx=2048) # download model from hf/ n_ctx=2048 for high ccontext length
history = []
pre_prompt = " The user and the AI are having a conversation : <|endoftext|> \n "
def generate_text(input_text, history):
print("history ", history)
print("input ", input_text)
temp = ""
if history == []:
input_text_with_history = f"SYSTEM:{pre_prompt}" + \
"\n" + f"USER: {input_text} " + "\n" + " ASSISTANT:"
else:
input_text_with_history = f"{history[-1][1]}" + "\n"
input_text_with_history += f"USER: {input_text}" + "\n" + " ASSISTANT:"
print("new input", input_text_with_history)
output = llm(input_text_with_history, max_tokens=1024, stop=[
"<|prompter|>", "<|endoftext|>", "<|endoftext|> \n", "ASSISTANT:", "USER:", "SYSTEM:"], stream=True)
for out in output:
stream = copy.deepcopy(out)
print(stream["choices"][0]["text"])
temp += stream["choices"][0]["text"]
yield temp
history = ["init", input_text_with_history]
demo = gr.ChatInterface(generate_text,
title="LLM on CPU",
description="Running LLM with https://github.com/abetlen/llama-cpp-python. btw the text streaming thing was the hardest thing to impliment",
examples=["Hello", "Am I cool?",
"Are tomatoes vegetables?"],
cache_examples=True,
retry_btn=None,
undo_btn="Delete Previous",
clear_btn="Clear",)
demo.queue(concurrency_count=1, max_size=5)
demo.launch()