Spaces:
Runtime error
Runtime error
Update multiclass_specificity_weighted.py
Browse files
multiclass_specificity_weighted.py
CHANGED
@@ -86,19 +86,19 @@ class multiclass_specificity_weighted(evaluate.Metric):
|
|
86 |
# TODO: Download external resources if needed
|
87 |
pass
|
88 |
|
89 |
-
def _compute(self,
|
90 |
import numpy as np
|
91 |
"""Returns the scores"""
|
92 |
# TODO: Compute the different scores of the module
|
93 |
-
unique_classes = np.unique(
|
94 |
num_classes = len(unique_classes)
|
95 |
specificity = np.zeros(num_classes)
|
96 |
-
class_counts = np.bincount(
|
97 |
-
total_samples = len(
|
98 |
|
99 |
for i, class_label in enumerate(unique_classes):
|
100 |
-
true_negative = sum((
|
101 |
-
total_negative = sum(
|
102 |
|
103 |
if total_negative != 0:
|
104 |
specificity[i] = true_negative / total_negative
|
@@ -106,7 +106,6 @@ class multiclass_specificity_weighted(evaluate.Metric):
|
|
106 |
specificity[i] = 0.0
|
107 |
|
108 |
weighted_specificity = np.sum(specificity * (class_counts / total_samples))
|
109 |
-
macro_specificity = np.mean(specificity)
|
110 |
|
111 |
return {
|
112 |
"weighted_specificity": weighted_specificity,
|
|
|
86 |
# TODO: Download external resources if needed
|
87 |
pass
|
88 |
|
89 |
+
def _compute(self, predictions, references):
|
90 |
import numpy as np
|
91 |
"""Returns the scores"""
|
92 |
# TODO: Compute the different scores of the module
|
93 |
+
unique_classes = np.unique(predictions)
|
94 |
num_classes = len(unique_classes)
|
95 |
specificity = np.zeros(num_classes)
|
96 |
+
class_counts = np.bincount(predictions)
|
97 |
+
total_samples = len(predictions)
|
98 |
|
99 |
for i, class_label in enumerate(unique_classes):
|
100 |
+
true_negative = sum((predictions != class_label) & (references != class_label))
|
101 |
+
total_negative = sum(predictions != class_label)
|
102 |
|
103 |
if total_negative != 0:
|
104 |
specificity[i] = true_negative / total_negative
|
|
|
106 |
specificity[i] = 0.0
|
107 |
|
108 |
weighted_specificity = np.sum(specificity * (class_counts / total_samples))
|
|
|
109 |
|
110 |
return {
|
111 |
"weighted_specificity": weighted_specificity,
|