Spaces:
Running
Running
package Math::BigInt::Calc; | |
use 5.006001; | |
use strict; | |
use warnings; | |
use Carp qw< carp croak >; | |
use Math::BigInt::Lib; | |
our $VERSION = '1.999818'; | |
our @ISA = ('Math::BigInt::Lib'); | |
# Package to store unsigned big integers in decimal and do math with them | |
# Internally the numbers are stored in an array with at least 1 element, no | |
# leading zero parts (except the first) and in base 1eX where X is determined | |
# automatically at loading time to be the maximum possible value | |
# todo: | |
# - fully remove funky $# stuff in div() (maybe - that code scares me...) | |
# USE_MUL: due to problems on certain os (os390, posix-bc) "* 1e-5" is used | |
# instead of "/ 1e5" at some places, (marked with USE_MUL). Other platforms | |
# BS2000, some Crays need USE_DIV instead. | |
# The BEGIN block is used to determine which of the two variants gives the | |
# correct result. | |
# Beware of things like: | |
# $i = $i * $y + $car; $car = int($i / $BASE); $i = $i % $BASE; | |
# This works on x86, but fails on ARM (SA1100, iPAQ) due to who knows what | |
# reasons. So, use this instead (slower, but correct): | |
# $i = $i * $y + $car; $car = int($i / $BASE); $i -= $BASE * $car; | |
############################################################################## | |
# global constants, flags and accessory | |
# constants for easier life | |
my ($BASE, $BASE_LEN, $RBASE, $MAX_VAL); | |
my ($AND_BITS, $XOR_BITS, $OR_BITS); | |
my ($AND_MASK, $XOR_MASK, $OR_MASK); | |
sub _base_len { | |
# Set/get the BASE_LEN and assorted other, related values. | |
# Used only by the testsuite, the set variant is used only by the BEGIN | |
# block below: | |
my ($class, $b, $int) = @_; | |
if (defined $b) { | |
no warnings "redefine"; | |
if ($] >= 5.008 && $int && $b > 7) { | |
$BASE_LEN = $b; | |
*_mul = \&_mul_use_div_64; | |
*_div = \&_div_use_div_64; | |
$BASE = int("1e" . $BASE_LEN); | |
$MAX_VAL = $BASE-1; | |
return $BASE_LEN unless wantarray; | |
return ($BASE_LEN, $BASE, $AND_BITS, $XOR_BITS, $OR_BITS, $BASE_LEN, $MAX_VAL); | |
} | |
# find whether we can use mul or div in mul()/div() | |
$BASE_LEN = $b + 1; | |
my $caught = 0; | |
while (--$BASE_LEN > 5) { | |
$BASE = int("1e" . $BASE_LEN); | |
$RBASE = abs('1e-' . $BASE_LEN); # see USE_MUL | |
$caught = 0; | |
$caught += 1 if (int($BASE * $RBASE) != 1); # should be 1 | |
$caught += 2 if (int($BASE / $BASE) != 1); # should be 1 | |
last if $caught != 3; | |
} | |
$BASE = int("1e" . $BASE_LEN); | |
$RBASE = abs('1e-' . $BASE_LEN); # see USE_MUL | |
$MAX_VAL = $BASE-1; | |
# ($caught & 1) != 0 => cannot use MUL | |
# ($caught & 2) != 0 => cannot use DIV | |
if ($caught == 2) # 2 | |
{ | |
# must USE_MUL since we cannot use DIV | |
*_mul = \&_mul_use_mul; | |
*_div = \&_div_use_mul; | |
} else # 0 or 1 | |
{ | |
# can USE_DIV instead | |
*_mul = \&_mul_use_div; | |
*_div = \&_div_use_div; | |
} | |
} | |
return $BASE_LEN unless wantarray; | |
return ($BASE_LEN, $BASE, $AND_BITS, $XOR_BITS, $OR_BITS, $BASE_LEN, $MAX_VAL); | |
} | |
sub _new { | |
# Given a string representing an integer, returns a reference to an array | |
# of integers, where each integer represents a chunk of the original input | |
# integer. | |
my ($class, $str) = @_; | |
#unless ($str =~ /^([1-9]\d*|0)\z/) { | |
# croak("Invalid input string '$str'"); | |
#} | |
my $input_len = length($str) - 1; | |
# Shortcut for small numbers. | |
return bless [ $str ], $class if $input_len < $BASE_LEN; | |
my $format = "a" . (($input_len % $BASE_LEN) + 1); | |
$format .= $] < 5.008 ? "a$BASE_LEN" x int($input_len / $BASE_LEN) | |
: "(a$BASE_LEN)*"; | |
my $self = [ reverse(map { 0 + $_ } unpack($format, $str)) ]; | |
return bless $self, $class; | |
} | |
BEGIN { | |
# from Daniel Pfeiffer: determine largest group of digits that is precisely | |
# multipliable with itself plus carry | |
# Test now changed to expect the proper pattern, not a result off by 1 or 2 | |
my ($e, $num) = 3; # lowest value we will use is 3+1-1 = 3 | |
do { | |
$num = '9' x ++$e; | |
$num *= $num + 1; | |
} while $num =~ /9{$e}0{$e}/; # must be a certain pattern | |
$e--; # last test failed, so retract one step | |
# the limits below brush the problems with the test above under the rug: | |
# the test should be able to find the proper $e automatically | |
$e = 5 if $^O =~ /^uts/; # UTS get's some special treatment | |
$e = 5 if $^O =~ /^unicos/; # unicos is also problematic (6 seems to work | |
# there, but we play safe) | |
my $int = 0; | |
if ($e > 7) { | |
use integer; | |
my $e1 = 7; | |
$num = 7; | |
do { | |
$num = ('9' x ++$e1) + 0; | |
$num *= $num + 1; | |
} while ("$num" =~ /9{$e1}0{$e1}/); # must be a certain pattern | |
$e1--; # last test failed, so retract one step | |
if ($e1 > 7) { | |
$int = 1; | |
$e = $e1; | |
} | |
} | |
__PACKAGE__ -> _base_len($e, $int); # set and store | |
use integer; | |
# find out how many bits _and, _or and _xor can take (old default = 16) | |
# I don't think anybody has yet 128 bit scalars, so let's play safe. | |
local $^W = 0; # don't warn about 'nonportable number' | |
$AND_BITS = 15; | |
$XOR_BITS = 15; | |
$OR_BITS = 15; | |
# find max bits, we will not go higher than numberofbits that fit into $BASE | |
# to make _and etc simpler (and faster for smaller, slower for large numbers) | |
my $max = 16; | |
while (2 ** $max < $BASE) { | |
$max++; | |
} | |
{ | |
no integer; | |
$max = 16 if $] < 5.006; # older Perls might not take >16 too well | |
} | |
my ($x, $y, $z); | |
do { | |
$AND_BITS++; | |
$x = CORE::oct('0b' . '1' x $AND_BITS); | |
$y = $x & $x; | |
$z = (2 ** $AND_BITS) - 1; | |
} while ($AND_BITS < $max && $x == $z && $y == $x); | |
$AND_BITS --; # retreat one step | |
do { | |
$XOR_BITS++; | |
$x = CORE::oct('0b' . '1' x $XOR_BITS); | |
$y = $x ^ 0; | |
$z = (2 ** $XOR_BITS) - 1; | |
} while ($XOR_BITS < $max && $x == $z && $y == $x); | |
$XOR_BITS --; # retreat one step | |
do { | |
$OR_BITS++; | |
$x = CORE::oct('0b' . '1' x $OR_BITS); | |
$y = $x | $x; | |
$z = (2 ** $OR_BITS) - 1; | |
} while ($OR_BITS < $max && $x == $z && $y == $x); | |
$OR_BITS--; # retreat one step | |
$AND_MASK = __PACKAGE__->_new(( 2 ** $AND_BITS )); | |
$XOR_MASK = __PACKAGE__->_new(( 2 ** $XOR_BITS )); | |
$OR_MASK = __PACKAGE__->_new(( 2 ** $OR_BITS )); | |
# We can compute the approximate length no faster than the real length: | |
*_alen = \&_len; | |
} | |
############################################################################### | |
sub _zero { | |
# create a zero | |
my $class = shift; | |
return bless [ 0 ], $class; | |
} | |
sub _one { | |
# create a one | |
my $class = shift; | |
return bless [ 1 ], $class; | |
} | |
sub _two { | |
# create a two | |
my $class = shift; | |
return bless [ 2 ], $class; | |
} | |
sub _ten { | |
# create a 10 | |
my $class = shift; | |
bless [ 10 ], $class; | |
} | |
sub _1ex { | |
# create a 1Ex | |
my $class = shift; | |
my $rem = $_[0] % $BASE_LEN; # remainder | |
my $parts = $_[0] / $BASE_LEN; # parts | |
# 000000, 000000, 100 | |
bless [ (0) x $parts, '1' . ('0' x $rem) ], $class; | |
} | |
sub _copy { | |
# make a true copy | |
my $class = shift; | |
return bless [ @{ $_[0] } ], $class; | |
} | |
# catch and throw away | |
sub import { } | |
############################################################################## | |
# convert back to string and number | |
sub _str { | |
# Convert number from internal base 1eN format to string format. Internal | |
# format is always normalized, i.e., no leading zeros. | |
my $ary = $_[1]; | |
my $idx = $#$ary; # index of last element | |
if ($idx < 0) { # should not happen | |
croak("$_[1] has no elements"); | |
} | |
# Handle first one differently, since it should not have any leading zeros. | |
my $ret = int($ary->[$idx]); | |
if ($idx > 0) { | |
# Interestingly, the pre-padd method uses more time. | |
# The old grep variant takes longer (14 vs. 10 sec). | |
my $z = '0' x ($BASE_LEN - 1); | |
while (--$idx >= 0) { | |
$ret .= substr($z . $ary->[$idx], -$BASE_LEN); | |
} | |
} | |
$ret; | |
} | |
sub _num { | |
# Make a Perl scalar number (int/float) from a BigInt object. | |
my $x = $_[1]; | |
return $x->[0] if @$x == 1; # below $BASE | |
# Start with the most significant element and work towards the least | |
# significant element. Avoid multiplying "inf" (which happens if the number | |
# overflows) with "0" (if there are zero elements in $x) since this gives | |
# "nan" which propagates to the output. | |
my $num = 0; | |
for (my $i = $#$x ; $i >= 0 ; --$i) { | |
$num *= $BASE; | |
$num += $x -> [$i]; | |
} | |
return $num; | |
} | |
############################################################################## | |
# actual math code | |
sub _add { | |
# (ref to int_num_array, ref to int_num_array) | |
# | |
# Routine to add two base 1eX numbers stolen from Knuth Vol 2 Algorithm A | |
# pg 231. There are separate routines to add and sub as per Knuth pg 233. | |
# This routine modifies array x, but not y. | |
my ($c, $x, $y) = @_; | |
# $x + 0 => $x | |
return $x if @$y == 1 && $y->[0] == 0; | |
# 0 + $y => $y->copy | |
if (@$x == 1 && $x->[0] == 0) { | |
@$x = @$y; | |
return $x; | |
} | |
# For each in Y, add Y to X and carry. If after that, something is left in | |
# X, foreach in X add carry to X and then return X, carry. Trades one | |
# "$j++" for having to shift arrays. | |
my $i; | |
my $car = 0; | |
my $j = 0; | |
for $i (@$y) { | |
$x->[$j] -= $BASE if $car = (($x->[$j] += $i + $car) >= $BASE) ? 1 : 0; | |
$j++; | |
} | |
while ($car != 0) { | |
$x->[$j] -= $BASE if $car = (($x->[$j] += $car) >= $BASE) ? 1 : 0; | |
$j++; | |
} | |
$x; | |
} | |
sub _inc { | |
# (ref to int_num_array, ref to int_num_array) | |
# Add 1 to $x, modify $x in place | |
my ($c, $x) = @_; | |
for my $i (@$x) { | |
return $x if ($i += 1) < $BASE; # early out | |
$i = 0; # overflow, next | |
} | |
push @$x, 1 if $x->[-1] == 0; # last overflowed, so extend | |
$x; | |
} | |
sub _dec { | |
# (ref to int_num_array, ref to int_num_array) | |
# Sub 1 from $x, modify $x in place | |
my ($c, $x) = @_; | |
my $MAX = $BASE - 1; # since MAX_VAL based on BASE | |
for my $i (@$x) { | |
last if ($i -= 1) >= 0; # early out | |
$i = $MAX; # underflow, next | |
} | |
pop @$x if $x->[-1] == 0 && @$x > 1; # last underflowed (but leave 0) | |
$x; | |
} | |
sub _sub { | |
# (ref to int_num_array, ref to int_num_array, swap) | |
# | |
# Subtract base 1eX numbers -- stolen from Knuth Vol 2 pg 232, $x > $y | |
# subtract Y from X by modifying x in place | |
my ($c, $sx, $sy, $s) = @_; | |
my $car = 0; | |
my $i; | |
my $j = 0; | |
if (!$s) { | |
for $i (@$sx) { | |
last unless defined $sy->[$j] || $car; | |
$i += $BASE if $car = (($i -= ($sy->[$j] || 0) + $car) < 0); | |
$j++; | |
} | |
# might leave leading zeros, so fix that | |
return __strip_zeros($sx); | |
} | |
for $i (@$sx) { | |
# We can't do an early out if $x < $y, since we need to copy the high | |
# chunks from $y. Found by Bob Mathews. | |
#last unless defined $sy->[$j] || $car; | |
$sy->[$j] += $BASE | |
if $car = ($sy->[$j] = $i - ($sy->[$j] || 0) - $car) < 0; | |
$j++; | |
} | |
# might leave leading zeros, so fix that | |
__strip_zeros($sy); | |
} | |
sub _mul_use_mul { | |
# (ref to int_num_array, ref to int_num_array) | |
# multiply two numbers in internal representation | |
# modifies first arg, second need not be different from first | |
my ($c, $xv, $yv) = @_; | |
if (@$yv == 1) { | |
# shortcut for two very short numbers (improved by Nathan Zook) works | |
# also if xv and yv are the same reference, and handles also $x == 0 | |
if (@$xv == 1) { | |
if (($xv->[0] *= $yv->[0]) >= $BASE) { | |
my $rem = $xv->[0] % $BASE; | |
$xv->[1] = ($xv->[0] - $rem) * $RBASE; | |
$xv->[0] = $rem; | |
} | |
return $xv; | |
} | |
# $x * 0 => 0 | |
if ($yv->[0] == 0) { | |
@$xv = (0); | |
return $xv; | |
} | |
# multiply a large number a by a single element one, so speed up | |
my $y = $yv->[0]; | |
my $car = 0; | |
my $rem; | |
foreach my $i (@$xv) { | |
$i = $i * $y + $car; | |
$rem = $i % $BASE; | |
$car = ($i - $rem) * $RBASE; | |
$i = $rem; | |
} | |
push @$xv, $car if $car != 0; | |
return $xv; | |
} | |
# shortcut for result $x == 0 => result = 0 | |
return $xv if @$xv == 1 && $xv->[0] == 0; | |
# since multiplying $x with $x fails, make copy in this case | |
$yv = $c->_copy($xv) if $xv == $yv; # same references? | |
my @prod = (); | |
my ($prod, $rem, $car, $cty, $xi, $yi); | |
for $xi (@$xv) { | |
$car = 0; | |
$cty = 0; | |
# looping through this if $xi == 0 is silly - so optimize it away! | |
$xi = (shift(@prod) || 0), next if $xi == 0; | |
for $yi (@$yv) { | |
$prod = $xi * $yi + ($prod[$cty] || 0) + $car; | |
$rem = $prod % $BASE; | |
$car = int(($prod - $rem) * $RBASE); | |
$prod[$cty++] = $rem; | |
} | |
$prod[$cty] += $car if $car; # need really to check for 0? | |
$xi = shift(@prod) || 0; # || 0 makes v5.005_3 happy | |
} | |
push @$xv, @prod; | |
$xv; | |
} | |
sub _mul_use_div_64 { | |
# (ref to int_num_array, ref to int_num_array) | |
# multiply two numbers in internal representation | |
# modifies first arg, second need not be different from first | |
# works for 64 bit integer with "use integer" | |
my ($c, $xv, $yv) = @_; | |
use integer; | |
if (@$yv == 1) { | |
# shortcut for two very short numbers (improved by Nathan Zook) works | |
# also if xv and yv are the same reference, and handles also $x == 0 | |
if (@$xv == 1) { | |
if (($xv->[0] *= $yv->[0]) >= $BASE) { | |
$xv->[0] = | |
$xv->[0] - ($xv->[1] = $xv->[0] / $BASE) * $BASE; | |
} | |
return $xv; | |
} | |
# $x * 0 => 0 | |
if ($yv->[0] == 0) { | |
@$xv = (0); | |
return $xv; | |
} | |
# multiply a large number a by a single element one, so speed up | |
my $y = $yv->[0]; | |
my $car = 0; | |
foreach my $i (@$xv) { | |
#$i = $i * $y + $car; $car = $i / $BASE; $i -= $car * $BASE; | |
$i = $i * $y + $car; | |
$i -= ($car = $i / $BASE) * $BASE; | |
} | |
push @$xv, $car if $car != 0; | |
return $xv; | |
} | |
# shortcut for result $x == 0 => result = 0 | |
return $xv if @$xv == 1 && $xv->[0] == 0; | |
# since multiplying $x with $x fails, make copy in this case | |
$yv = $c->_copy($xv) if $xv == $yv; # same references? | |
my @prod = (); | |
my ($prod, $car, $cty, $xi, $yi); | |
for $xi (@$xv) { | |
$car = 0; | |
$cty = 0; | |
# looping through this if $xi == 0 is silly - so optimize it away! | |
$xi = (shift(@prod) || 0), next if $xi == 0; | |
for $yi (@$yv) { | |
$prod = $xi * $yi + ($prod[$cty] || 0) + $car; | |
$prod[$cty++] = $prod - ($car = $prod / $BASE) * $BASE; | |
} | |
$prod[$cty] += $car if $car; # need really to check for 0? | |
$xi = shift(@prod) || 0; # || 0 makes v5.005_3 happy | |
} | |
push @$xv, @prod; | |
$xv; | |
} | |
sub _mul_use_div { | |
# (ref to int_num_array, ref to int_num_array) | |
# multiply two numbers in internal representation | |
# modifies first arg, second need not be different from first | |
my ($c, $xv, $yv) = @_; | |
if (@$yv == 1) { | |
# shortcut for two very short numbers (improved by Nathan Zook) works | |
# also if xv and yv are the same reference, and handles also $x == 0 | |
if (@$xv == 1) { | |
if (($xv->[0] *= $yv->[0]) >= $BASE) { | |
my $rem = $xv->[0] % $BASE; | |
$xv->[1] = ($xv->[0] - $rem) / $BASE; | |
$xv->[0] = $rem; | |
} | |
return $xv; | |
} | |
# $x * 0 => 0 | |
if ($yv->[0] == 0) { | |
@$xv = (0); | |
return $xv; | |
} | |
# multiply a large number a by a single element one, so speed up | |
my $y = $yv->[0]; | |
my $car = 0; | |
my $rem; | |
foreach my $i (@$xv) { | |
$i = $i * $y + $car; | |
$rem = $i % $BASE; | |
$car = ($i - $rem) / $BASE; | |
$i = $rem; | |
} | |
push @$xv, $car if $car != 0; | |
return $xv; | |
} | |
# shortcut for result $x == 0 => result = 0 | |
return $xv if @$xv == 1 && $xv->[0] == 0; | |
# since multiplying $x with $x fails, make copy in this case | |
$yv = $c->_copy($xv) if $xv == $yv; # same references? | |
my @prod = (); | |
my ($prod, $rem, $car, $cty, $xi, $yi); | |
for $xi (@$xv) { | |
$car = 0; | |
$cty = 0; | |
# looping through this if $xi == 0 is silly - so optimize it away! | |
$xi = (shift(@prod) || 0), next if $xi == 0; | |
for $yi (@$yv) { | |
$prod = $xi * $yi + ($prod[$cty] || 0) + $car; | |
$rem = $prod % $BASE; | |
$car = ($prod - $rem) / $BASE; | |
$prod[$cty++] = $rem; | |
} | |
$prod[$cty] += $car if $car; # need really to check for 0? | |
$xi = shift(@prod) || 0; # || 0 makes v5.005_3 happy | |
} | |
push @$xv, @prod; | |
$xv; | |
} | |
sub _div_use_mul { | |
# ref to array, ref to array, modify first array and return remainder if | |
# in list context | |
my ($c, $x, $yorg) = @_; | |
# the general div algorithm here is about O(N*N) and thus quite slow, so | |
# we first check for some special cases and use shortcuts to handle them. | |
# if both numbers have only one element: | |
if (@$x == 1 && @$yorg == 1) { | |
# shortcut, $yorg and $x are two small numbers | |
my $rem = [ $x->[0] % $yorg->[0] ]; | |
bless $rem, $c; | |
$x->[0] = ($x->[0] - $rem->[0]) / $yorg->[0]; | |
return ($x, $rem) if wantarray; | |
return $x; | |
} | |
# if x has more than one, but y has only one element: | |
if (@$yorg == 1) { | |
my $rem; | |
$rem = $c->_mod($c->_copy($x), $yorg) if wantarray; | |
# shortcut, $y is < $BASE | |
my $j = @$x; | |
my $r = 0; | |
my $y = $yorg->[0]; | |
my $b; | |
while ($j-- > 0) { | |
$b = $r * $BASE + $x->[$j]; | |
$r = $b % $y; | |
$x->[$j] = ($b - $r) / $y; | |
} | |
pop(@$x) if @$x > 1 && $x->[-1] == 0; # remove any trailing zero | |
return ($x, $rem) if wantarray; | |
return $x; | |
} | |
# now x and y have more than one element | |
# check whether y has more elements than x, if so, the result is 0 | |
if (@$yorg > @$x) { | |
my $rem; | |
$rem = $c->_copy($x) if wantarray; # make copy | |
@$x = 0; # set to 0 | |
return ($x, $rem) if wantarray; # including remainder? | |
return $x; # only x, which is [0] now | |
} | |
# check whether the numbers have the same number of elements, in that case | |
# the result will fit into one element and can be computed efficiently | |
if (@$yorg == @$x) { | |
my $cmp = 0; | |
for (my $j = $#$x ; $j >= 0 ; --$j) { | |
last if $cmp = $x->[$j] - $yorg->[$j]; | |
} | |
if ($cmp == 0) { # x = y | |
@$x = 1; | |
return $x, $c->_zero() if wantarray; | |
return $x; | |
} | |
if ($cmp < 0) { # x < y | |
if (wantarray) { | |
my $rem = $c->_copy($x); | |
@$x = 0; | |
return $x, $rem; | |
} | |
@$x = 0; | |
return $x; | |
} | |
} | |
# all other cases: | |
my $y = $c->_copy($yorg); # always make copy to preserve | |
my $tmp = $y->[-1] + 1; | |
my $rem = $BASE % $tmp; | |
my $dd = ($BASE - $rem) / $tmp; | |
if ($dd != 1) { | |
my $car = 0; | |
for my $xi (@$x) { | |
$xi = $xi * $dd + $car; | |
$xi -= ($car = int($xi * $RBASE)) * $BASE; # see USE_MUL | |
} | |
push(@$x, $car); | |
$car = 0; | |
for my $yi (@$y) { | |
$yi = $yi * $dd + $car; | |
$yi -= ($car = int($yi * $RBASE)) * $BASE; # see USE_MUL | |
} | |
} else { | |
push(@$x, 0); | |
} | |
# @q will accumulate the final result, $q contains the current computed | |
# part of the final result | |
my @q = (); | |
my ($v2, $v1) = @$y[-2, -1]; | |
$v2 = 0 unless $v2; | |
while ($#$x > $#$y) { | |
my ($u2, $u1, $u0) = @$x[-3 .. -1]; | |
$u2 = 0 unless $u2; | |
#warn "oups v1 is 0, u0: $u0 $y->[-2] $y->[-1] l ",scalar @$y,"\n" | |
# if $v1 == 0; | |
my $tmp = $u0 * $BASE + $u1; | |
my $rem = $tmp % $v1; | |
my $q = $u0 == $v1 ? $MAX_VAL : (($tmp - $rem) / $v1); | |
--$q while $v2 * $q > ($u0 * $BASE + $u1 - $q * $v1) * $BASE + $u2; | |
if ($q) { | |
my $prd; | |
my ($car, $bar) = (0, 0); | |
for (my $yi = 0, my $xi = $#$x - $#$y - 1; $yi <= $#$y; ++$yi, ++$xi) { | |
$prd = $q * $y->[$yi] + $car; | |
$prd -= ($car = int($prd * $RBASE)) * $BASE; # see USE_MUL | |
$x->[$xi] += $BASE if $bar = (($x->[$xi] -= $prd + $bar) < 0); | |
} | |
if ($x->[-1] < $car + $bar) { | |
$car = 0; | |
--$q; | |
for (my $yi = 0, my $xi = $#$x - $#$y - 1; $yi <= $#$y; ++$yi, ++$xi) { | |
$x->[$xi] -= $BASE | |
if $car = (($x->[$xi] += $y->[$yi] + $car) >= $BASE); | |
} | |
} | |
} | |
pop(@$x); | |
unshift(@q, $q); | |
} | |
if (wantarray) { | |
my $d = bless [], $c; | |
if ($dd != 1) { | |
my $car = 0; | |
my ($prd, $rem); | |
for my $xi (reverse @$x) { | |
$prd = $car * $BASE + $xi; | |
$rem = $prd % $dd; | |
$tmp = ($prd - $rem) / $dd; | |
$car = $rem; | |
unshift @$d, $tmp; | |
} | |
} else { | |
@$d = @$x; | |
} | |
@$x = @q; | |
__strip_zeros($x); | |
__strip_zeros($d); | |
return ($x, $d); | |
} | |
@$x = @q; | |
__strip_zeros($x); | |
$x; | |
} | |
sub _div_use_div_64 { | |
# ref to array, ref to array, modify first array and return remainder if | |
# in list context | |
# This version works on integers | |
use integer; | |
my ($c, $x, $yorg) = @_; | |
# the general div algorithm here is about O(N*N) and thus quite slow, so | |
# we first check for some special cases and use shortcuts to handle them. | |
# if both numbers have only one element: | |
if (@$x == 1 && @$yorg == 1) { | |
# shortcut, $yorg and $x are two small numbers | |
if (wantarray) { | |
my $rem = [ $x->[0] % $yorg->[0] ]; | |
bless $rem, $c; | |
$x->[0] = $x->[0] / $yorg->[0]; | |
return ($x, $rem); | |
} else { | |
$x->[0] = $x->[0] / $yorg->[0]; | |
return $x; | |
} | |
} | |
# if x has more than one, but y has only one element: | |
if (@$yorg == 1) { | |
my $rem; | |
$rem = $c->_mod($c->_copy($x), $yorg) if wantarray; | |
# shortcut, $y is < $BASE | |
my $j = @$x; | |
my $r = 0; | |
my $y = $yorg->[0]; | |
my $b; | |
while ($j-- > 0) { | |
$b = $r * $BASE + $x->[$j]; | |
$r = $b % $y; | |
$x->[$j] = $b / $y; | |
} | |
pop(@$x) if @$x > 1 && $x->[-1] == 0; # remove any trailing zero | |
return ($x, $rem) if wantarray; | |
return $x; | |
} | |
# now x and y have more than one element | |
# check whether y has more elements than x, if so, the result is 0 | |
if (@$yorg > @$x) { | |
my $rem; | |
$rem = $c->_copy($x) if wantarray; # make copy | |
@$x = 0; # set to 0 | |
return ($x, $rem) if wantarray; # including remainder? | |
return $x; # only x, which is [0] now | |
} | |
# check whether the numbers have the same number of elements, in that case | |
# the result will fit into one element and can be computed efficiently | |
if (@$yorg == @$x) { | |
my $cmp = 0; | |
for (my $j = $#$x ; $j >= 0 ; --$j) { | |
last if $cmp = $x->[$j] - $yorg->[$j]; | |
} | |
if ($cmp == 0) { # x = y | |
@$x = 1; | |
return $x, $c->_zero() if wantarray; | |
return $x; | |
} | |
if ($cmp < 0) { # x < y | |
if (wantarray) { | |
my $rem = $c->_copy($x); | |
@$x = 0; | |
return $x, $rem; | |
} | |
@$x = 0; | |
return $x; | |
} | |
} | |
# all other cases: | |
my $y = $c->_copy($yorg); # always make copy to preserve | |
my $tmp; | |
my $dd = $BASE / ($y->[-1] + 1); | |
if ($dd != 1) { | |
my $car = 0; | |
for my $xi (@$x) { | |
$xi = $xi * $dd + $car; | |
$xi -= ($car = $xi / $BASE) * $BASE; | |
} | |
push(@$x, $car); | |
$car = 0; | |
for my $yi (@$y) { | |
$yi = $yi * $dd + $car; | |
$yi -= ($car = $yi / $BASE) * $BASE; | |
} | |
} else { | |
push(@$x, 0); | |
} | |
# @q will accumulate the final result, $q contains the current computed | |
# part of the final result | |
my @q = (); | |
my ($v2, $v1) = @$y[-2, -1]; | |
$v2 = 0 unless $v2; | |
while ($#$x > $#$y) { | |
my ($u2, $u1, $u0) = @$x[-3 .. -1]; | |
$u2 = 0 unless $u2; | |
#warn "oups v1 is 0, u0: $u0 $y->[-2] $y->[-1] l ",scalar @$y,"\n" | |
# if $v1 == 0; | |
my $tmp = $u0 * $BASE + $u1; | |
my $rem = $tmp % $v1; | |
my $q = $u0 == $v1 ? $MAX_VAL : (($tmp - $rem) / $v1); | |
--$q while $v2 * $q > ($u0 * $BASE + $u1 - $q * $v1) * $BASE + $u2; | |
if ($q) { | |
my $prd; | |
my ($car, $bar) = (0, 0); | |
for (my $yi = 0, my $xi = $#$x - $#$y - 1; $yi <= $#$y; ++$yi, ++$xi) { | |
$prd = $q * $y->[$yi] + $car; | |
$prd -= ($car = int($prd / $BASE)) * $BASE; | |
$x->[$xi] += $BASE if $bar = (($x->[$xi] -= $prd + $bar) < 0); | |
} | |
if ($x->[-1] < $car + $bar) { | |
$car = 0; | |
--$q; | |
for (my $yi = 0, my $xi = $#$x - $#$y - 1; $yi <= $#$y; ++$yi, ++$xi) { | |
$x->[$xi] -= $BASE | |
if $car = (($x->[$xi] += $y->[$yi] + $car) >= $BASE); | |
} | |
} | |
} | |
pop(@$x); | |
unshift(@q, $q); | |
} | |
if (wantarray) { | |
my $d = bless [], $c; | |
if ($dd != 1) { | |
my $car = 0; | |
my $prd; | |
for my $xi (reverse @$x) { | |
$prd = $car * $BASE + $xi; | |
$car = $prd - ($tmp = $prd / $dd) * $dd; | |
unshift @$d, $tmp; | |
} | |
} else { | |
@$d = @$x; | |
} | |
@$x = @q; | |
__strip_zeros($x); | |
__strip_zeros($d); | |
return ($x, $d); | |
} | |
@$x = @q; | |
__strip_zeros($x); | |
$x; | |
} | |
sub _div_use_div { | |
# ref to array, ref to array, modify first array and return remainder if | |
# in list context | |
my ($c, $x, $yorg) = @_; | |
# the general div algorithm here is about O(N*N) and thus quite slow, so | |
# we first check for some special cases and use shortcuts to handle them. | |
# if both numbers have only one element: | |
if (@$x == 1 && @$yorg == 1) { | |
# shortcut, $yorg and $x are two small numbers | |
my $rem = [ $x->[0] % $yorg->[0] ]; | |
bless $rem, $c; | |
$x->[0] = ($x->[0] - $rem->[0]) / $yorg->[0]; | |
return ($x, $rem) if wantarray; | |
return $x; | |
} | |
# if x has more than one, but y has only one element: | |
if (@$yorg == 1) { | |
my $rem; | |
$rem = $c->_mod($c->_copy($x), $yorg) if wantarray; | |
# shortcut, $y is < $BASE | |
my $j = @$x; | |
my $r = 0; | |
my $y = $yorg->[0]; | |
my $b; | |
while ($j-- > 0) { | |
$b = $r * $BASE + $x->[$j]; | |
$r = $b % $y; | |
$x->[$j] = ($b - $r) / $y; | |
} | |
pop(@$x) if @$x > 1 && $x->[-1] == 0; # remove any trailing zero | |
return ($x, $rem) if wantarray; | |
return $x; | |
} | |
# now x and y have more than one element | |
# check whether y has more elements than x, if so, the result is 0 | |
if (@$yorg > @$x) { | |
my $rem; | |
$rem = $c->_copy($x) if wantarray; # make copy | |
@$x = 0; # set to 0 | |
return ($x, $rem) if wantarray; # including remainder? | |
return $x; # only x, which is [0] now | |
} | |
# check whether the numbers have the same number of elements, in that case | |
# the result will fit into one element and can be computed efficiently | |
if (@$yorg == @$x) { | |
my $cmp = 0; | |
for (my $j = $#$x ; $j >= 0 ; --$j) { | |
last if $cmp = $x->[$j] - $yorg->[$j]; | |
} | |
if ($cmp == 0) { # x = y | |
@$x = 1; | |
return $x, $c->_zero() if wantarray; | |
return $x; | |
} | |
if ($cmp < 0) { # x < y | |
if (wantarray) { | |
my $rem = $c->_copy($x); | |
@$x = 0; | |
return $x, $rem; | |
} | |
@$x = 0; | |
return $x; | |
} | |
} | |
# all other cases: | |
my $y = $c->_copy($yorg); # always make copy to preserve | |
my $tmp = $y->[-1] + 1; | |
my $rem = $BASE % $tmp; | |
my $dd = ($BASE - $rem) / $tmp; | |
if ($dd != 1) { | |
my $car = 0; | |
for my $xi (@$x) { | |
$xi = $xi * $dd + $car; | |
$rem = $xi % $BASE; | |
$car = ($xi - $rem) / $BASE; | |
$xi = $rem; | |
} | |
push(@$x, $car); | |
$car = 0; | |
for my $yi (@$y) { | |
$yi = $yi * $dd + $car; | |
$rem = $yi % $BASE; | |
$car = ($yi - $rem) / $BASE; | |
$yi = $rem; | |
} | |
} else { | |
push(@$x, 0); | |
} | |
# @q will accumulate the final result, $q contains the current computed | |
# part of the final result | |
my @q = (); | |
my ($v2, $v1) = @$y[-2, -1]; | |
$v2 = 0 unless $v2; | |
while ($#$x > $#$y) { | |
my ($u2, $u1, $u0) = @$x[-3 .. -1]; | |
$u2 = 0 unless $u2; | |
#warn "oups v1 is 0, u0: $u0 $y->[-2] $y->[-1] l ",scalar @$y,"\n" | |
# if $v1 == 0; | |
my $tmp = $u0 * $BASE + $u1; | |
my $rem = $tmp % $v1; | |
my $q = $u0 == $v1 ? $MAX_VAL : (($tmp - $rem) / $v1); | |
--$q while $v2 * $q > ($u0 * $BASE + $u1 - $q * $v1) * $BASE + $u2; | |
if ($q) { | |
my $prd; | |
my ($car, $bar) = (0, 0); | |
for (my $yi = 0, my $xi = $#$x - $#$y - 1; $yi <= $#$y; ++$yi, ++$xi) { | |
$prd = $q * $y->[$yi] + $car; | |
$rem = $prd % $BASE; | |
$car = ($prd - $rem) / $BASE; | |
$prd -= $car * $BASE; | |
$x->[$xi] += $BASE if $bar = (($x->[$xi] -= $prd + $bar) < 0); | |
} | |
if ($x->[-1] < $car + $bar) { | |
$car = 0; | |
--$q; | |
for (my $yi = 0, my $xi = $#$x - $#$y - 1; $yi <= $#$y; ++$yi, ++$xi) { | |
$x->[$xi] -= $BASE | |
if $car = (($x->[$xi] += $y->[$yi] + $car) >= $BASE); | |
} | |
} | |
} | |
pop(@$x); | |
unshift(@q, $q); | |
} | |
if (wantarray) { | |
my $d = bless [], $c; | |
if ($dd != 1) { | |
my $car = 0; | |
my ($prd, $rem); | |
for my $xi (reverse @$x) { | |
$prd = $car * $BASE + $xi; | |
$rem = $prd % $dd; | |
$tmp = ($prd - $rem) / $dd; | |
$car = $rem; | |
unshift @$d, $tmp; | |
} | |
} else { | |
@$d = @$x; | |
} | |
@$x = @q; | |
__strip_zeros($x); | |
__strip_zeros($d); | |
return ($x, $d); | |
} | |
@$x = @q; | |
__strip_zeros($x); | |
$x; | |
} | |
############################################################################## | |
# testing | |
sub _acmp { | |
# Internal absolute post-normalized compare (ignore signs) | |
# ref to array, ref to array, return <0, 0, >0 | |
# Arrays must have at least one entry; this is not checked for. | |
my ($c, $cx, $cy) = @_; | |
# shortcut for short numbers | |
return (($cx->[0] <=> $cy->[0]) <=> 0) | |
if @$cx == 1 && @$cy == 1; | |
# fast comp based on number of array elements (aka pseudo-length) | |
my $lxy = (@$cx - @$cy) | |
# or length of first element if same number of elements (aka difference 0) | |
|| | |
# need int() here because sometimes the last element is '00018' vs '18' | |
(length(int($cx->[-1])) - length(int($cy->[-1]))); | |
return -1 if $lxy < 0; # already differs, ret | |
return 1 if $lxy > 0; # ditto | |
# manual way (abort if unequal, good for early ne) | |
my $a; | |
my $j = @$cx; | |
while (--$j >= 0) { | |
last if $a = $cx->[$j] - $cy->[$j]; | |
} | |
$a <=> 0; | |
} | |
sub _len { | |
# compute number of digits in base 10 | |
# int() because add/sub sometimes leaves strings (like '00005') instead of | |
# '5' in this place, thus causing length() to report wrong length | |
my $cx = $_[1]; | |
(@$cx - 1) * $BASE_LEN + length(int($cx->[-1])); | |
} | |
sub _digit { | |
# Return the nth digit. Zero is rightmost, so _digit(123, 0) gives 3. | |
# Negative values count from the left, so _digit(123, -1) gives 1. | |
my ($c, $x, $n) = @_; | |
my $len = _len('', $x); | |
$n += $len if $n < 0; # -1 last, -2 second-to-last | |
# Math::BigInt::Calc returns 0 if N is out of range, but this is not done | |
# by the other backend libraries. | |
return "0" if $n < 0 || $n >= $len; # return 0 for digits out of range | |
my $elem = int($n / $BASE_LEN); # index of array element | |
my $digit = $n % $BASE_LEN; # index of digit within the element | |
substr("0" x $BASE_LEN . "$x->[$elem]", -1 - $digit, 1); | |
} | |
sub _zeros { | |
# Return number of trailing zeros in decimal. | |
# Check each array element for having 0 at end as long as elem == 0 | |
# Upon finding a elem != 0, stop. | |
my $x = $_[1]; | |
return 0 if @$x == 1 && $x->[0] == 0; | |
my $zeros = 0; | |
foreach my $elem (@$x) { | |
if ($elem != 0) { | |
$elem =~ /[^0](0*)\z/; | |
$zeros += length($1); # count trailing zeros | |
last; # early out | |
} | |
$zeros += $BASE_LEN; | |
} | |
$zeros; | |
} | |
############################################################################## | |
# _is_* routines | |
sub _is_zero { | |
# return true if arg is zero | |
@{$_[1]} == 1 && $_[1]->[0] == 0 ? 1 : 0; | |
} | |
sub _is_even { | |
# return true if arg is even | |
$_[1]->[0] & 1 ? 0 : 1; | |
} | |
sub _is_odd { | |
# return true if arg is odd | |
$_[1]->[0] & 1 ? 1 : 0; | |
} | |
sub _is_one { | |
# return true if arg is one | |
@{$_[1]} == 1 && $_[1]->[0] == 1 ? 1 : 0; | |
} | |
sub _is_two { | |
# return true if arg is two | |
@{$_[1]} == 1 && $_[1]->[0] == 2 ? 1 : 0; | |
} | |
sub _is_ten { | |
# return true if arg is ten | |
@{$_[1]} == 1 && $_[1]->[0] == 10 ? 1 : 0; | |
} | |
sub __strip_zeros { | |
# Internal normalization function that strips leading zeros from the array. | |
# Args: ref to array | |
my $x = shift; | |
push @$x, 0 if @$x == 0; # div might return empty results, so fix it | |
return $x if @$x == 1; # early out | |
#print "strip: cnt $cnt i $i\n"; | |
# '0', '3', '4', '0', '0', | |
# 0 1 2 3 4 | |
# cnt = 5, i = 4 | |
# i = 4 | |
# i = 3 | |
# => fcnt = cnt - i (5-2 => 3, cnt => 5-1 = 4, throw away from 4th pos) | |
# >= 1: skip first part (this can be zero) | |
my $i = $#$x; | |
while ($i > 0) { | |
last if $x->[$i] != 0; | |
$i--; | |
} | |
$i++; | |
splice(@$x, $i) if $i < @$x; | |
$x; | |
} | |
############################################################################### | |
# check routine to test internal state for corruptions | |
sub _check { | |
# used by the test suite | |
my ($class, $x) = @_; | |
my $msg = $class -> SUPER::_check($x); | |
return $msg if $msg; | |
my $n; | |
eval { $n = @$x }; | |
return "Not an array reference" unless $@ eq ''; | |
return "Reference to an empty array" unless $n > 0; | |
# The following fails with Math::BigInt::FastCalc because a | |
# Math::BigInt::FastCalc "object" is an unblessed array ref. | |
# | |
#return 0 unless ref($x) eq $class; | |
for (my $i = 0 ; $i <= $#$x ; ++ $i) { | |
my $e = $x -> [$i]; | |
return "Element at index $i is undefined" | |
unless defined $e; | |
return "Element at index $i is a '" . ref($e) . | |
"', which is not a scalar" | |
unless ref($e) eq ""; | |
# It would be better to use the regex /^([1-9]\d*|0)\z/, but that fails | |
# in Math::BigInt::FastCalc, because it sometimes creates array | |
# elements like "000000". | |
return "Element at index $i is '$e', which does not look like an" . | |
" normal integer" unless $e =~ /^\d+\z/; | |
return "Element at index $i is '$e', which is not smaller than" . | |
" the base '$BASE'" if $e >= $BASE; | |
return "Element at index $i (last element) is zero" | |
if $#$x > 0 && $i == $#$x && $e == 0; | |
} | |
return 0; | |
} | |
############################################################################### | |
sub _mod { | |
# if possible, use mod shortcut | |
my ($c, $x, $yo) = @_; | |
# slow way since $y too big | |
if (@$yo > 1) { | |
my ($xo, $rem) = $c->_div($x, $yo); | |
@$x = @$rem; | |
return $x; | |
} | |
my $y = $yo->[0]; | |
# if both are single element arrays | |
if (@$x == 1) { | |
$x->[0] %= $y; | |
return $x; | |
} | |
# if @$x has more than one element, but @$y is a single element | |
my $b = $BASE % $y; | |
if ($b == 0) { | |
# when BASE % Y == 0 then (B * BASE) % Y == 0 | |
# (B * BASE) % $y + A % Y => A % Y | |
# so need to consider only last element: O(1) | |
$x->[0] %= $y; | |
} elsif ($b == 1) { | |
# else need to go through all elements in @$x: O(N), but loop is a bit | |
# simplified | |
my $r = 0; | |
foreach (@$x) { | |
$r = ($r + $_) % $y; # not much faster, but heh... | |
#$r += $_ % $y; $r %= $y; | |
} | |
$r = 0 if $r == $y; | |
$x->[0] = $r; | |
} else { | |
# else need to go through all elements in @$x: O(N) | |
my $r = 0; | |
my $bm = 1; | |
foreach (@$x) { | |
$r = ($_ * $bm + $r) % $y; | |
$bm = ($bm * $b) % $y; | |
#$r += ($_ % $y) * $bm; | |
#$bm *= $b; | |
#$bm %= $y; | |
#$r %= $y; | |
} | |
$r = 0 if $r == $y; | |
$x->[0] = $r; | |
} | |
@$x = $x->[0]; # keep one element of @$x | |
return $x; | |
} | |
############################################################################## | |
# shifts | |
sub _rsft { | |
my ($c, $x, $y, $n) = @_; | |
if ($n != 10) { | |
$n = $c->_new($n); | |
return scalar $c->_div($x, $c->_pow($n, $y)); | |
} | |
# shortcut (faster) for shifting by 10) | |
# multiples of $BASE_LEN | |
my $dst = 0; # destination | |
my $src = $c->_num($y); # as normal int | |
my $xlen = (@$x - 1) * $BASE_LEN + length(int($x->[-1])); | |
if ($src >= $xlen or ($src == $xlen and !defined $x->[1])) { | |
# 12345 67890 shifted right by more than 10 digits => 0 | |
splice(@$x, 1); # leave only one element | |
$x->[0] = 0; # set to zero | |
return $x; | |
} | |
my $rem = $src % $BASE_LEN; # remainder to shift | |
$src = int($src / $BASE_LEN); # source | |
if ($rem == 0) { | |
splice(@$x, 0, $src); # even faster, 38.4 => 39.3 | |
} else { | |
my $len = @$x - $src; # elems to go | |
my $vd; | |
my $z = '0' x $BASE_LEN; | |
$x->[ @$x ] = 0; # avoid || 0 test inside loop | |
while ($dst < $len) { | |
$vd = $z . $x->[$src]; | |
$vd = substr($vd, -$BASE_LEN, $BASE_LEN - $rem); | |
$src++; | |
$vd = substr($z . $x->[$src], -$rem, $rem) . $vd; | |
$vd = substr($vd, -$BASE_LEN, $BASE_LEN) if length($vd) > $BASE_LEN; | |
$x->[$dst] = int($vd); | |
$dst++; | |
} | |
splice(@$x, $dst) if $dst > 0; # kill left-over array elems | |
pop(@$x) if $x->[-1] == 0 && @$x > 1; # kill last element if 0 | |
} # else rem == 0 | |
$x; | |
} | |
sub _lsft { | |
my ($c, $x, $n, $b) = @_; | |
return $x if $c->_is_zero($x) || $c->_is_zero($n); | |
# For backwards compatibility, allow the base $b to be a scalar. | |
$b = $c->_new($b) unless ref $b; | |
# If the base is a power of 10, use shifting, since the internal | |
# representation is in base 10eX. | |
my $bstr = $c->_str($b); | |
if ($bstr =~ /^1(0+)\z/) { | |
# Adjust $n so that we're shifting in base 10. Do this by multiplying | |
# $n by the base 10 logarithm of $b: $b ** $n = 10 ** (log10($b) * $n). | |
my $log10b = length($1); | |
$n = $c->_mul($c->_new($log10b), $n); | |
$n = $c->_num($n); # shift-len as normal int | |
# $q is the number of places to shift the elements within the array, | |
# and $r is the number of places to shift the values within the | |
# elements. | |
my $r = $n % $BASE_LEN; | |
my $q = ($n - $r) / $BASE_LEN; | |
# If we must shift the values within the elements ... | |
if ($r) { | |
my $i = @$x; # index | |
$x->[$i] = 0; # initialize most significant element | |
my $z = '0' x $BASE_LEN; | |
my $vd; | |
while ($i >= 0) { | |
$vd = $x->[$i]; | |
$vd = $z . $vd; | |
$vd = substr($vd, $r - $BASE_LEN, $BASE_LEN - $r); | |
$vd .= $i > 0 ? substr($z . $x->[$i - 1], -$BASE_LEN, $r) | |
: '0' x $r; | |
$vd = substr($vd, -$BASE_LEN, $BASE_LEN) if length($vd) > $BASE_LEN; | |
$x->[$i] = int($vd); # e.g., "0...048" -> 48 etc. | |
$i--; | |
} | |
pop(@$x) if $x->[-1] == 0; # if most significant element is zero | |
} | |
# If we must shift the elements within the array ... | |
if ($q) { | |
unshift @$x, (0) x $q; | |
} | |
} else { | |
$x = $c->_mul($x, $c->_pow($b, $n)); | |
} | |
return $x; | |
} | |
sub _pow { | |
# power of $x to $y | |
# ref to array, ref to array, return ref to array | |
my ($c, $cx, $cy) = @_; | |
if (@$cy == 1 && $cy->[0] == 0) { | |
splice(@$cx, 1); | |
$cx->[0] = 1; # y == 0 => x => 1 | |
return $cx; | |
} | |
if ((@$cx == 1 && $cx->[0] == 1) || # x == 1 | |
(@$cy == 1 && $cy->[0] == 1)) # or y == 1 | |
{ | |
return $cx; | |
} | |
if (@$cx == 1 && $cx->[0] == 0) { | |
splice (@$cx, 1); | |
$cx->[0] = 0; # 0 ** y => 0 (if not y <= 0) | |
return $cx; | |
} | |
my $pow2 = $c->_one(); | |
my $y_bin = $c->_as_bin($cy); | |
$y_bin =~ s/^0b//; | |
my $len = length($y_bin); | |
while (--$len > 0) { | |
$c->_mul($pow2, $cx) if substr($y_bin, $len, 1) eq '1'; # is odd? | |
$c->_mul($cx, $cx); | |
} | |
$c->_mul($cx, $pow2); | |
$cx; | |
} | |
sub _nok { | |
# Return binomial coefficient (n over k). | |
# Given refs to arrays, return ref to array. | |
# First input argument is modified. | |
my ($c, $n, $k) = @_; | |
# If k > n/2, or, equivalently, 2*k > n, compute nok(n, k) as | |
# nok(n, n-k), to minimize the number if iterations in the loop. | |
{ | |
my $twok = $c->_mul($c->_two(), $c->_copy($k)); # 2 * k | |
if ($c->_acmp($twok, $n) > 0) { # if 2*k > n | |
$k = $c->_sub($c->_copy($n), $k); # k = n - k | |
} | |
} | |
# Example: | |
# | |
# / 7 \ 7! 1*2*3*4 * 5*6*7 5 * 6 * 7 6 7 | |
# | | = --------- = --------------- = --------- = 5 * - * - | |
# \ 3 / (7-3)! 3! 1*2*3*4 * 1*2*3 1 * 2 * 3 2 3 | |
if ($c->_is_zero($k)) { | |
@$n = 1; | |
} else { | |
# Make a copy of the original n, since we'll be modifying n in-place. | |
my $n_orig = $c->_copy($n); | |
# n = 5, f = 6, d = 2 (cf. example above) | |
$c->_sub($n, $k); | |
$c->_inc($n); | |
my $f = $c->_copy($n); | |
$c->_inc($f); | |
my $d = $c->_two(); | |
# while f <= n (the original n, that is) ... | |
while ($c->_acmp($f, $n_orig) <= 0) { | |
# n = (n * f / d) == 5 * 6 / 2 (cf. example above) | |
$c->_mul($n, $f); | |
$c->_div($n, $d); | |
# f = 7, d = 3 (cf. example above) | |
$c->_inc($f); | |
$c->_inc($d); | |
} | |
} | |
return $n; | |
} | |
my @factorials = ( | |
1, | |
1, | |
2, | |
2*3, | |
2*3*4, | |
2*3*4*5, | |
2*3*4*5*6, | |
2*3*4*5*6*7, | |
); | |
sub _fac { | |
# factorial of $x | |
# ref to array, return ref to array | |
my ($c, $cx) = @_; | |
if ((@$cx == 1) && ($cx->[0] <= 7)) { | |
$cx->[0] = $factorials[$cx->[0]]; # 0 => 1, 1 => 1, 2 => 2 etc. | |
return $cx; | |
} | |
if ((@$cx == 1) && # we do this only if $x >= 12 and $x <= 7000 | |
($cx->[0] >= 12 && $cx->[0] < 7000)) { | |
# Calculate (k-j) * (k-j+1) ... k .. (k+j-1) * (k + j) | |
# See http://blogten.blogspot.com/2007/01/calculating-n.html | |
# The above series can be expressed as factors: | |
# k * k - (j - i) * 2 | |
# We cache k*k, and calculate (j * j) as the sum of the first j odd integers | |
# This will not work when N exceeds the storage of a Perl scalar, however, | |
# in this case the algorithm would be way too slow to terminate, anyway. | |
# As soon as the last element of $cx is 0, we split it up and remember | |
# how many zeors we got so far. The reason is that n! will accumulate | |
# zeros at the end rather fast. | |
my $zero_elements = 0; | |
# If n is even, set n = n -1 | |
my $k = $c->_num($cx); | |
my $even = 1; | |
if (($k & 1) == 0) { | |
$even = $k; | |
$k --; | |
} | |
# set k to the center point | |
$k = ($k + 1) / 2; | |
# print "k $k even: $even\n"; | |
# now calculate k * k | |
my $k2 = $k * $k; | |
my $odd = 1; | |
my $sum = 1; | |
my $i = $k - 1; | |
# keep reference to x | |
my $new_x = $c->_new($k * $even); | |
@$cx = @$new_x; | |
if ($cx->[0] == 0) { | |
$zero_elements ++; | |
shift @$cx; | |
} | |
# print STDERR "x = ", $c->_str($cx), "\n"; | |
my $BASE2 = int(sqrt($BASE))-1; | |
my $j = 1; | |
while ($j <= $i) { | |
my $m = ($k2 - $sum); | |
$odd += 2; | |
$sum += $odd; | |
$j++; | |
while ($j <= $i && ($m < $BASE2) && (($k2 - $sum) < $BASE2)) { | |
$m *= ($k2 - $sum); | |
$odd += 2; | |
$sum += $odd; | |
$j++; | |
# print STDERR "\n k2 $k2 m $m sum $sum odd $odd\n"; sleep(1); | |
} | |
if ($m < $BASE) { | |
$c->_mul($cx, [$m]); | |
} else { | |
$c->_mul($cx, $c->_new($m)); | |
} | |
if ($cx->[0] == 0) { | |
$zero_elements ++; | |
shift @$cx; | |
} | |
# print STDERR "Calculate $k2 - $sum = $m (x = ", $c->_str($cx), ")\n"; | |
} | |
# multiply in the zeros again | |
unshift @$cx, (0) x $zero_elements; | |
return $cx; | |
} | |
# go forward until $base is exceeded limit is either $x steps (steps == 100 | |
# means a result always too high) or $base. | |
my $steps = 100; | |
$steps = $cx->[0] if @$cx == 1; | |
my $r = 2; | |
my $cf = 3; | |
my $step = 2; | |
my $last = $r; | |
while ($r * $cf < $BASE && $step < $steps) { | |
$last = $r; | |
$r *= $cf++; | |
$step++; | |
} | |
if ((@$cx == 1) && $step == $cx->[0]) { | |
# completely done, so keep reference to $x and return | |
$cx->[0] = $r; | |
return $cx; | |
} | |
# now we must do the left over steps | |
my $n; # steps still to do | |
if (@$cx == 1) { | |
$n = $cx->[0]; | |
} else { | |
$n = $c->_copy($cx); | |
} | |
# Set $cx to the last result below $BASE (but keep ref to $x) | |
$cx->[0] = $last; | |
splice (@$cx, 1); | |
# As soon as the last element of $cx is 0, we split it up and remember | |
# how many zeors we got so far. The reason is that n! will accumulate | |
# zeros at the end rather fast. | |
my $zero_elements = 0; | |
# do left-over steps fit into a scalar? | |
if (ref $n eq 'ARRAY') { | |
# No, so use slower inc() & cmp() | |
# ($n is at least $BASE here) | |
my $base_2 = int(sqrt($BASE)) - 1; | |
#print STDERR "base_2: $base_2\n"; | |
while ($step < $base_2) { | |
if ($cx->[0] == 0) { | |
$zero_elements ++; | |
shift @$cx; | |
} | |
my $b = $step * ($step + 1); | |
$step += 2; | |
$c->_mul($cx, [$b]); | |
} | |
$step = [$step]; | |
while ($c->_acmp($step, $n) <= 0) { | |
if ($cx->[0] == 0) { | |
$zero_elements ++; | |
shift @$cx; | |
} | |
$c->_mul($cx, $step); | |
$c->_inc($step); | |
} | |
} else { | |
# Yes, so we can speed it up slightly | |
# print "# left over steps $n\n"; | |
my $base_4 = int(sqrt(sqrt($BASE))) - 2; | |
#print STDERR "base_4: $base_4\n"; | |
my $n4 = $n - 4; | |
while ($step < $n4 && $step < $base_4) { | |
if ($cx->[0] == 0) { | |
$zero_elements ++; | |
shift @$cx; | |
} | |
my $b = $step * ($step + 1); | |
$step += 2; | |
$b *= $step * ($step + 1); | |
$step += 2; | |
$c->_mul($cx, [$b]); | |
} | |
my $base_2 = int(sqrt($BASE)) - 1; | |
my $n2 = $n - 2; | |
#print STDERR "base_2: $base_2\n"; | |
while ($step < $n2 && $step < $base_2) { | |
if ($cx->[0] == 0) { | |
$zero_elements ++; | |
shift @$cx; | |
} | |
my $b = $step * ($step + 1); | |
$step += 2; | |
$c->_mul($cx, [$b]); | |
} | |
# do what's left over | |
while ($step <= $n) { | |
$c->_mul($cx, [$step]); | |
$step++; | |
if ($cx->[0] == 0) { | |
$zero_elements ++; | |
shift @$cx; | |
} | |
} | |
} | |
# multiply in the zeros again | |
unshift @$cx, (0) x $zero_elements; | |
$cx; # return result | |
} | |
sub _log_int { | |
# calculate integer log of $x to base $base | |
# ref to array, ref to array - return ref to array | |
my ($c, $x, $base) = @_; | |
# X == 0 => NaN | |
return if @$x == 1 && $x->[0] == 0; | |
# BASE 0 or 1 => NaN | |
return if @$base == 1 && $base->[0] < 2; | |
# X == 1 => 0 (is exact) | |
if (@$x == 1 && $x->[0] == 1) { | |
@$x = 0; | |
return $x, 1; | |
} | |
my $cmp = $c->_acmp($x, $base); | |
# X == BASE => 1 (is exact) | |
if ($cmp == 0) { | |
@$x = 1; | |
return $x, 1; | |
} | |
# 1 < X < BASE => 0 (is truncated) | |
if ($cmp < 0) { | |
@$x = 0; | |
return $x, 0; | |
} | |
my $x_org = $c->_copy($x); # preserve x | |
# Compute a guess for the result based on: | |
# $guess = int ( length_in_base_10(X) / ( log(base) / log(10) ) ) | |
my $len = $c->_len($x_org); | |
my $log = log($base->[-1]) / log(10); | |
# for each additional element in $base, we add $BASE_LEN to the result, | |
# based on the observation that log($BASE, 10) is BASE_LEN and | |
# log(x*y) == log(x) + log(y): | |
$log += (@$base - 1) * $BASE_LEN; | |
# calculate now a guess based on the values obtained above: | |
my $res = int($len / $log); | |
@$x = $res; | |
my $trial = $c->_pow($c->_copy($base), $x); | |
my $acmp = $c->_acmp($trial, $x_org); | |
# Did we get the exact result? | |
return $x, 1 if $acmp == 0; | |
# Too small? | |
while ($acmp < 0) { | |
$c->_mul($trial, $base); | |
$c->_inc($x); | |
$acmp = $c->_acmp($trial, $x_org); | |
} | |
# Too big? | |
while ($acmp > 0) { | |
$c->_div($trial, $base); | |
$c->_dec($x); | |
$acmp = $c->_acmp($trial, $x_org); | |
} | |
return $x, 1 if $acmp == 0; # result is exact | |
return $x, 0; # result is too small | |
} | |
# for debugging: | |
use constant DEBUG => 0; | |
my $steps = 0; | |
sub steps { $steps }; | |
sub _sqrt { | |
# square-root of $x in place | |
# Compute a guess of the result (by rule of thumb), then improve it via | |
# Newton's method. | |
my ($c, $x) = @_; | |
if (@$x == 1) { | |
# fits into one Perl scalar, so result can be computed directly | |
$x->[0] = int(sqrt($x->[0])); | |
return $x; | |
} | |
my $y = $c->_copy($x); | |
# hopefully _len/2 is < $BASE, the -1 is to always undershot the guess | |
# since our guess will "grow" | |
my $l = int(($c->_len($x)-1) / 2); | |
my $lastelem = $x->[-1]; # for guess | |
my $elems = @$x - 1; | |
# not enough digits, but could have more? | |
if ((length($lastelem) <= 3) && ($elems > 1)) { | |
# right-align with zero pad | |
my $len = length($lastelem) & 1; | |
print "$lastelem => " if DEBUG; | |
$lastelem .= substr($x->[-2] . '0' x $BASE_LEN, 0, $BASE_LEN); | |
# former odd => make odd again, or former even to even again | |
$lastelem = $lastelem / 10 if (length($lastelem) & 1) != $len; | |
print "$lastelem\n" if DEBUG; | |
} | |
# construct $x (instead of $c->_lsft($x, $l, 10) | |
my $r = $l % $BASE_LEN; # 10000 00000 00000 00000 ($BASE_LEN=5) | |
$l = int($l / $BASE_LEN); | |
print "l = $l " if DEBUG; | |
splice @$x, $l; # keep ref($x), but modify it | |
# we make the first part of the guess not '1000...0' but int(sqrt($lastelem)) | |
# that gives us: | |
# 14400 00000 => sqrt(14400) => guess first digits to be 120 | |
# 144000 000000 => sqrt(144000) => guess 379 | |
print "$lastelem (elems $elems) => " if DEBUG; | |
$lastelem = $lastelem / 10 if ($elems & 1 == 1); # odd or even? | |
my $g = sqrt($lastelem); | |
$g =~ s/\.//; # 2.345 => 2345 | |
$r -= 1 if $elems & 1 == 0; # 70 => 7 | |
# padd with zeros if result is too short | |
$x->[$l--] = int(substr($g . '0' x $r, 0, $r+1)); | |
print "now ", $x->[-1] if DEBUG; | |
print " would have been ", int('1' . '0' x $r), "\n" if DEBUG; | |
# If @$x > 1, we could compute the second elem of the guess, too, to create | |
# an even better guess. Not implemented yet. Does it improve performance? | |
$x->[$l--] = 0 while ($l >= 0); # all other digits of guess are zero | |
print "start x= ", $c->_str($x), "\n" if DEBUG; | |
my $two = $c->_two(); | |
my $last = $c->_zero(); | |
my $lastlast = $c->_zero(); | |
$steps = 0 if DEBUG; | |
while ($c->_acmp($last, $x) != 0 && $c->_acmp($lastlast, $x) != 0) { | |
$steps++ if DEBUG; | |
$lastlast = $c->_copy($last); | |
$last = $c->_copy($x); | |
$c->_add($x, $c->_div($c->_copy($y), $x)); | |
$c->_div($x, $two ); | |
print " x= ", $c->_str($x), "\n" if DEBUG; | |
} | |
print "\nsteps in sqrt: $steps, " if DEBUG; | |
$c->_dec($x) if $c->_acmp($y, $c->_mul($c->_copy($x), $x)) < 0; # overshot? | |
print " final ", $x->[-1], "\n" if DEBUG; | |
$x; | |
} | |
sub _root { | |
# Take n'th root of $x in place. | |
my ($c, $x, $n) = @_; | |
# Small numbers. | |
if (@$x == 1 && @$n == 1) { | |
# Result can be computed directly. Adjust initial result for numerical | |
# errors, e.g., int(1000**(1/3)) is 2, not 3. | |
my $y = int($x->[0] ** (1 / $n->[0])); | |
my $yp1 = $y + 1; | |
$y = $yp1 if $yp1 ** $n->[0] == $x->[0]; | |
$x->[0] = $y; | |
return $x; | |
} | |
# If x <= n, the result is always (truncated to) 1. | |
if ((@$x > 1 || $x -> [0] > 0) && # if x is non-zero ... | |
$c -> _acmp($x, $n) <= 0) # ... and x <= n | |
{ | |
my $one = $x -> _one(); | |
@$x = @$one; | |
return $x; | |
} | |
# If $n is a power of two, take sqrt($x) repeatedly, e.g., root($x, 4) = | |
# sqrt(sqrt($x)), root($x, 8) = sqrt(sqrt(sqrt($x))). | |
my $b = $c -> _as_bin($n); | |
if ($b =~ /0b1(0+)$/) { | |
my $count = length($1); # 0b100 => len('00') => 2 | |
my $cnt = $count; # counter for loop | |
unshift @$x, 0; # add one element, together with one | |
# more below in the loop this makes 2 | |
while ($cnt-- > 0) { | |
# 'Inflate' $x by adding one element, basically computing | |
# $x * $BASE * $BASE. This gives us more $BASE_LEN digits for | |
# result since len(sqrt($X)) approx == len($x) / 2. | |
unshift @$x, 0; | |
# Calculate sqrt($x), $x is now one element to big, again. In the | |
# next round we make that two, again. | |
$c -> _sqrt($x); | |
} | |
# $x is now one element too big, so truncate result by removing it. | |
shift @$x; | |
return $x; | |
} | |
my $DEBUG = 0; | |
# Now the general case. This works by finding an initial guess. If this | |
# guess is incorrect, a relatively small delta is chosen. This delta is | |
# used to find a lower and upper limit for the correct value. The delta is | |
# doubled in each iteration. When a lower and upper limit is found, | |
# bisection is applied to narrow down the region until we have the correct | |
# value. | |
# Split x into mantissa and exponent in base 10, so that | |
# | |
# x = xm * 10^xe, where 0 < xm < 1 and xe is an integer | |
my $x_str = $c -> _str($x); | |
my $xm = "." . $x_str; | |
my $xe = length($x_str); | |
# From this we compute the base 10 logarithm of x | |
# | |
# log_10(x) = log_10(xm) + log_10(xe^10) | |
# = log(xm)/log(10) + xe | |
# | |
# and then the base 10 logarithm of y, where y = x^(1/n) | |
# | |
# log_10(y) = log_10(x)/n | |
my $log10x = log($xm) / log(10) + $xe; | |
my $log10y = $log10x / $c -> _num($n); | |
# And from this we compute ym and ye, the mantissa and exponent (in | |
# base 10) of y, where 1 < ym <= 10 and ye is an integer. | |
my $ye = int $log10y; | |
my $ym = 10 ** ($log10y - $ye); | |
# Finally, we scale the mantissa and exponent to incraese the integer | |
# part of ym, before building the string representing our guess of y. | |
if ($DEBUG) { | |
print "\n"; | |
print "xm = $xm\n"; | |
print "xe = $xe\n"; | |
print "log10x = $log10x\n"; | |
print "log10y = $log10y\n"; | |
print "ym = $ym\n"; | |
print "ye = $ye\n"; | |
print "\n"; | |
} | |
my $d = $ye < 15 ? $ye : 15; | |
$ym *= 10 ** $d; | |
$ye -= $d; | |
my $y_str = sprintf('%.0f', $ym) . "0" x $ye; | |
my $y = $c -> _new($y_str); | |
if ($DEBUG) { | |
print "ym = $ym\n"; | |
print "ye = $ye\n"; | |
print "\n"; | |
print "y_str = $y_str (initial guess)\n"; | |
print "\n"; | |
} | |
# See if our guess y is correct. | |
my $trial = $c -> _pow($c -> _copy($y), $n); | |
my $acmp = $c -> _acmp($trial, $x); | |
if ($acmp == 0) { | |
@$x = @$y; | |
return $x; | |
} | |
# Find a lower and upper limit for the correct value of y. Start off with a | |
# delta value that is approximately the size of the accuracy of the guess. | |
my $lower; | |
my $upper; | |
my $delta = $c -> _new("1" . ("0" x $ye)); | |
my $two = $c -> _two(); | |
if ($acmp < 0) { | |
$lower = $y; | |
while ($acmp < 0) { | |
$upper = $c -> _add($c -> _copy($lower), $delta); | |
if ($DEBUG) { | |
print "lower = $lower\n"; | |
print "upper = $upper\n"; | |
print "delta = $delta\n"; | |
print "\n"; | |
} | |
$acmp = $c -> _acmp($c -> _pow($c -> _copy($upper), $n), $x); | |
if ($acmp == 0) { | |
@$x = @$upper; | |
return $x; | |
} | |
$delta = $c -> _mul($delta, $two); | |
} | |
} | |
elsif ($acmp > 0) { | |
$upper = $y; | |
while ($acmp > 0) { | |
if ($c -> _acmp($upper, $delta) <= 0) { | |
$lower = $c -> _zero(); | |
last; | |
} | |
$lower = $c -> _sub($c -> _copy($upper), $delta); | |
if ($DEBUG) { | |
print "lower = $lower\n"; | |
print "upper = $upper\n"; | |
print "delta = $delta\n"; | |
print "\n"; | |
} | |
$acmp = $c -> _acmp($c -> _pow($c -> _copy($lower), $n), $x); | |
if ($acmp == 0) { | |
@$x = @$lower; | |
return $x; | |
} | |
$delta = $c -> _mul($delta, $two); | |
} | |
} | |
# Use bisection to narrow down the interval. | |
my $one = $c -> _one(); | |
{ | |
$delta = $c -> _sub($c -> _copy($upper), $lower); | |
if ($c -> _acmp($delta, $one) <= 0) { | |
@$x = @$lower; | |
return $x; | |
} | |
if ($DEBUG) { | |
print "lower = $lower\n"; | |
print "upper = $upper\n"; | |
print "delta = $delta\n"; | |
print "\n"; | |
} | |
$delta = $c -> _div($delta, $two); | |
my $middle = $c -> _add($c -> _copy($lower), $delta); | |
$acmp = $c -> _acmp($c -> _pow($c -> _copy($middle), $n), $x); | |
if ($acmp < 0) { | |
$lower = $middle; | |
} elsif ($acmp > 0) { | |
$upper = $middle; | |
} else { | |
@$x = @$middle; | |
return $x; | |
} | |
redo; | |
} | |
$x; | |
} | |
############################################################################## | |
# binary stuff | |
sub _and { | |
my ($c, $x, $y) = @_; | |
# the shortcut makes equal, large numbers _really_ fast, and makes only a | |
# very small performance drop for small numbers (e.g. something with less | |
# than 32 bit) Since we optimize for large numbers, this is enabled. | |
return $x if $c->_acmp($x, $y) == 0; # shortcut | |
my $m = $c->_one(); | |
my ($xr, $yr); | |
my $mask = $AND_MASK; | |
my $x1 = $c->_copy($x); | |
my $y1 = $c->_copy($y); | |
my $z = $c->_zero(); | |
use integer; | |
until ($c->_is_zero($x1) || $c->_is_zero($y1)) { | |
($x1, $xr) = $c->_div($x1, $mask); | |
($y1, $yr) = $c->_div($y1, $mask); | |
$c->_add($z, $c->_mul([ 0 + $xr->[0] & 0 + $yr->[0] ], $m)); | |
$c->_mul($m, $mask); | |
} | |
@$x = @$z; | |
return $x; | |
} | |
sub _xor { | |
my ($c, $x, $y) = @_; | |
return $c->_zero() if $c->_acmp($x, $y) == 0; # shortcut (see -and) | |
my $m = $c->_one(); | |
my ($xr, $yr); | |
my $mask = $XOR_MASK; | |
my $x1 = $c->_copy($x); | |
my $y1 = $c->_copy($y); # make copy | |
my $z = $c->_zero(); | |
use integer; | |
until ($c->_is_zero($x1) || $c->_is_zero($y1)) { | |
($x1, $xr) = $c->_div($x1, $mask); | |
($y1, $yr) = $c->_div($y1, $mask); | |
# make ints() from $xr, $yr (see _and()) | |
#$b = 1; $xrr = 0; foreach (@$xr) { $xrr += $_ * $b; $b *= $BASE; } | |
#$b = 1; $yrr = 0; foreach (@$yr) { $yrr += $_ * $b; $b *= $BASE; } | |
#$c->_add($x, $c->_mul($c->_new($xrr ^ $yrr)), $m) ); | |
$c->_add($z, $c->_mul([ 0 + $xr->[0] ^ 0 + $yr->[0] ], $m)); | |
$c->_mul($m, $mask); | |
} | |
# the loop stops when the shorter of the two numbers is exhausted | |
# the remainder of the longer one will survive bit-by-bit, so we simple | |
# multiply-add it in | |
$c->_add($z, $c->_mul($x1, $m) ) if !$c->_is_zero($x1); | |
$c->_add($z, $c->_mul($y1, $m) ) if !$c->_is_zero($y1); | |
@$x = @$z; | |
return $x; | |
} | |
sub _or { | |
my ($c, $x, $y) = @_; | |
return $x if $c->_acmp($x, $y) == 0; # shortcut (see _and) | |
my $m = $c->_one(); | |
my ($xr, $yr); | |
my $mask = $OR_MASK; | |
my $x1 = $c->_copy($x); | |
my $y1 = $c->_copy($y); # make copy | |
my $z = $c->_zero(); | |
use integer; | |
until ($c->_is_zero($x1) || $c->_is_zero($y1)) { | |
($x1, $xr) = $c->_div($x1, $mask); | |
($y1, $yr) = $c->_div($y1, $mask); | |
# make ints() from $xr, $yr (see _and()) | |
# $b = 1; $xrr = 0; foreach (@$xr) { $xrr += $_ * $b; $b *= $BASE; } | |
# $b = 1; $yrr = 0; foreach (@$yr) { $yrr += $_ * $b; $b *= $BASE; } | |
# $c->_add($x, $c->_mul(_new( $c, ($xrr | $yrr) ), $m) ); | |
$c->_add($z, $c->_mul([ 0 + $xr->[0] | 0 + $yr->[0] ], $m)); | |
$c->_mul($m, $mask); | |
} | |
# the loop stops when the shorter of the two numbers is exhausted | |
# the remainder of the longer one will survive bit-by-bit, so we simple | |
# multiply-add it in | |
$c->_add($z, $c->_mul($x1, $m) ) if !$c->_is_zero($x1); | |
$c->_add($z, $c->_mul($y1, $m) ) if !$c->_is_zero($y1); | |
@$x = @$z; | |
return $x; | |
} | |
sub _as_hex { | |
# convert a decimal number to hex (ref to array, return ref to string) | |
my ($c, $x) = @_; | |
# fits into one element (handle also 0x0 case) | |
return sprintf("0x%x", $x->[0]) if @$x == 1; | |
my $x1 = $c->_copy($x); | |
my $es = ''; | |
my ($xr, $h, $x10000); | |
if ($] >= 5.006) { | |
$x10000 = [ 0x10000 ]; | |
$h = 'h4'; | |
} else { | |
$x10000 = [ 0x1000 ]; | |
$h = 'h3'; | |
} | |
while (@$x1 != 1 || $x1->[0] != 0) # _is_zero() | |
{ | |
($x1, $xr) = $c->_div($x1, $x10000); | |
$es .= unpack($h, pack('V', $xr->[0])); | |
} | |
$es = reverse $es; | |
$es =~ s/^[0]+//; # strip leading zeros | |
'0x' . $es; # return result prepended with 0x | |
} | |
sub _as_bin { | |
# convert a decimal number to bin (ref to array, return ref to string) | |
my ($c, $x) = @_; | |
# fits into one element (and Perl recent enough), handle also 0b0 case | |
# handle zero case for older Perls | |
if ($] <= 5.005 && @$x == 1 && $x->[0] == 0) { | |
my $t = '0b0'; | |
return $t; | |
} | |
if (@$x == 1 && $] >= 5.006) { | |
my $t = sprintf("0b%b", $x->[0]); | |
return $t; | |
} | |
my $x1 = $c->_copy($x); | |
my $es = ''; | |
my ($xr, $b, $x10000); | |
if ($] >= 5.006) { | |
$x10000 = [ 0x10000 ]; | |
$b = 'b16'; | |
} else { | |
$x10000 = [ 0x1000 ]; | |
$b = 'b12'; | |
} | |
while (!(@$x1 == 1 && $x1->[0] == 0)) # _is_zero() | |
{ | |
($x1, $xr) = $c->_div($x1, $x10000); | |
$es .= unpack($b, pack('v', $xr->[0])); | |
} | |
$es = reverse $es; | |
$es =~ s/^[0]+//; # strip leading zeros | |
'0b' . $es; # return result prepended with 0b | |
} | |
sub _as_oct { | |
# convert a decimal number to octal (ref to array, return ref to string) | |
my ($c, $x) = @_; | |
# fits into one element (handle also 0 case) | |
return sprintf("0%o", $x->[0]) if @$x == 1; | |
my $x1 = $c->_copy($x); | |
my $es = ''; | |
my $xr; | |
my $x1000 = [ 0100000 ]; | |
while (@$x1 != 1 || $x1->[0] != 0) # _is_zero() | |
{ | |
($x1, $xr) = $c->_div($x1, $x1000); | |
$es .= reverse sprintf("%05o", $xr->[0]); | |
} | |
$es = reverse $es; | |
$es =~ s/^0+//; # strip leading zeros | |
'0' . $es; # return result prepended with 0 | |
} | |
sub _from_oct { | |
# convert a octal number to decimal (string, return ref to array) | |
my ($c, $os) = @_; | |
# for older Perls, play safe | |
my $m = [ 0100000 ]; | |
my $d = 5; # 5 digits at a time | |
my $mul = $c->_one(); | |
my $x = $c->_zero(); | |
my $len = int((length($os) - 1) / $d); # $d digit parts, w/o the '0' | |
my $val; | |
my $i = -$d; | |
while ($len >= 0) { | |
$val = substr($os, $i, $d); # get oct digits | |
$val = CORE::oct($val); | |
$i -= $d; | |
$len --; | |
my $adder = [ $val ]; | |
$c->_add($x, $c->_mul($adder, $mul)) if $val != 0; | |
$c->_mul($mul, $m) if $len >= 0; # skip last mul | |
} | |
$x; | |
} | |
sub _from_hex { | |
# convert a hex number to decimal (string, return ref to array) | |
my ($c, $hs) = @_; | |
my $m = $c->_new(0x10000000); # 28 bit at a time (<32 bit!) | |
my $d = 7; # 7 digits at a time | |
my $mul = $c->_one(); | |
my $x = $c->_zero(); | |
my $len = int((length($hs) - 2) / $d); # $d digit parts, w/o the '0x' | |
my $val; | |
my $i = -$d; | |
while ($len >= 0) { | |
$val = substr($hs, $i, $d); # get hex digits | |
$val =~ s/^0x// if $len == 0; # for last part only because | |
$val = CORE::hex($val); # hex does not like wrong chars | |
$i -= $d; | |
$len --; | |
my $adder = [ $val ]; | |
# if the resulting number was to big to fit into one element, create a | |
# two-element version (bug found by Mark Lakata - Thanx!) | |
if (CORE::length($val) > $BASE_LEN) { | |
$adder = $c->_new($val); | |
} | |
$c->_add($x, $c->_mul($adder, $mul)) if $val != 0; | |
$c->_mul($mul, $m) if $len >= 0; # skip last mul | |
} | |
$x; | |
} | |
sub _from_bin { | |
# convert a hex number to decimal (string, return ref to array) | |
my ($c, $bs) = @_; | |
# instead of converting X (8) bit at a time, it is faster to "convert" the | |
# number to hex, and then call _from_hex. | |
my $hs = $bs; | |
$hs =~ s/^[+-]?0b//; # remove sign and 0b | |
my $l = length($hs); # bits | |
$hs = '0' x (8 - ($l % 8)) . $hs if ($l % 8) != 0; # padd left side w/ 0 | |
my $h = '0x' . unpack('H*', pack ('B*', $hs)); # repack as hex | |
$c->_from_hex($h); | |
} | |
############################################################################## | |
# special modulus functions | |
sub _modinv { | |
# modular multiplicative inverse | |
my ($c, $x, $y) = @_; | |
# modulo zero | |
if ($c->_is_zero($y)) { | |
return undef, undef; | |
} | |
# modulo one | |
if ($c->_is_one($y)) { | |
return $c->_zero(), '+'; | |
} | |
my $u = $c->_zero(); | |
my $v = $c->_one(); | |
my $a = $c->_copy($y); | |
my $b = $c->_copy($x); | |
# Euclid's Algorithm for bgcd(), only that we calc bgcd() ($a) and the result | |
# ($u) at the same time. See comments in BigInt for why this works. | |
my $q; | |
my $sign = 1; | |
{ | |
($a, $q, $b) = ($b, $c->_div($a, $b)); # step 1 | |
last if $c->_is_zero($b); | |
my $t = $c->_add( # step 2: | |
$c->_mul($c->_copy($v), $q), # t = v * q | |
$u); # + u | |
$u = $v; # u = v | |
$v = $t; # v = t | |
$sign = -$sign; | |
redo; | |
} | |
# if the gcd is not 1, then return NaN | |
return (undef, undef) unless $c->_is_one($a); | |
($v, $sign == 1 ? '+' : '-'); | |
} | |
sub _modpow { | |
# modulus of power ($x ** $y) % $z | |
my ($c, $num, $exp, $mod) = @_; | |
# a^b (mod 1) = 0 for all a and b | |
if ($c->_is_one($mod)) { | |
@$num = 0; | |
return $num; | |
} | |
# 0^a (mod m) = 0 if m != 0, a != 0 | |
# 0^0 (mod m) = 1 if m != 0 | |
if ($c->_is_zero($num)) { | |
if ($c->_is_zero($exp)) { | |
@$num = 1; | |
} else { | |
@$num = 0; | |
} | |
return $num; | |
} | |
# $num = $c->_mod($num, $mod); # this does not make it faster | |
my $acc = $c->_copy($num); | |
my $t = $c->_one(); | |
my $expbin = $c->_as_bin($exp); | |
$expbin =~ s/^0b//; | |
my $len = length($expbin); | |
while (--$len >= 0) { | |
if (substr($expbin, $len, 1) eq '1') { # is_odd | |
$t = $c->_mul($t, $acc); | |
$t = $c->_mod($t, $mod); | |
} | |
$acc = $c->_mul($acc, $acc); | |
$acc = $c->_mod($acc, $mod); | |
} | |
@$num = @$t; | |
$num; | |
} | |
sub _gcd { | |
# Greatest common divisor. | |
my ($c, $x, $y) = @_; | |
# gcd(0, 0) = 0 | |
# gcd(0, a) = a, if a != 0 | |
if (@$x == 1 && $x->[0] == 0) { | |
if (@$y == 1 && $y->[0] == 0) { | |
@$x = 0; | |
} else { | |
@$x = @$y; | |
} | |
return $x; | |
} | |
# Until $y is zero ... | |
until (@$y == 1 && $y->[0] == 0) { | |
# Compute remainder. | |
$c->_mod($x, $y); | |
# Swap $x and $y. | |
my $tmp = $c->_copy($x); | |
@$x = @$y; | |
$y = $tmp; # no deref here; that would modify input $y | |
} | |
return $x; | |
} | |
1; | |
=pod | |
=head1 NAME | |
Math::BigInt::Calc - Pure Perl module to support Math::BigInt | |
=head1 SYNOPSIS | |
# to use it with Math::BigInt | |
use Math::BigInt lib => 'Calc'; | |
# to use it with Math::BigFloat | |
use Math::BigFloat lib => 'Calc'; | |
# to use it with Math::BigRat | |
use Math::BigRat lib => 'Calc'; | |
=head1 DESCRIPTION | |
Math::BigInt::Calc inherits from Math::BigInt::Lib. | |
In this library, the numbers are represented in base B = 10**N, where N is the | |
largest possible value that does not cause overflow in the intermediate | |
computations. The base B elements are stored in an array, with the least | |
significant element stored in array element zero. There are no leading zero | |
elements, except a single zero element when the number is zero. | |
For instance, if B = 10000, the number 1234567890 is represented internally | |
as [7890, 3456, 12]. | |
=head1 SEE ALSO | |
L<Math::BigInt::Lib> for a description of the API. | |
Alternative libraries L<Math::BigInt::FastCalc>, L<Math::BigInt::GMP>, and | |
L<Math::BigInt::Pari>. | |
Some of the modules that use these libraries L<Math::BigInt>, | |
L<Math::BigFloat>, and L<Math::BigRat>. | |
=cut | |