Spaces:
Running
Running
package Math::BigInt::Lib; | |
use 5.006001; | |
use strict; | |
use warnings; | |
our $VERSION = '1.999818'; | |
use Carp; | |
use overload | |
# overload key: with_assign | |
'+' => sub { | |
my $class = ref $_[0]; | |
my $x = $class -> _copy($_[0]); | |
my $y = ref($_[1]) ? $_[1] : $class -> _new($_[1]); | |
return $class -> _add($x, $y); | |
}, | |
'-' => sub { | |
my $class = ref $_[0]; | |
my ($x, $y); | |
if ($_[2]) { # if swapped | |
$y = $_[0]; | |
$x = ref($_[1]) ? $_[1] : $class -> _new($_[1]); | |
} else { | |
$x = $class -> _copy($_[0]); | |
$y = ref($_[1]) ? $_[1] : $class -> _new($_[1]); | |
} | |
return $class -> _sub($x, $y); | |
}, | |
'*' => sub { | |
my $class = ref $_[0]; | |
my $x = $class -> _copy($_[0]); | |
my $y = ref($_[1]) ? $_[1] : $class -> _new($_[1]); | |
return $class -> _mul($x, $y); | |
}, | |
'/' => sub { | |
my $class = ref $_[0]; | |
my ($x, $y); | |
if ($_[2]) { # if swapped | |
$y = $_[0]; | |
$x = ref($_[1]) ? $_[1] : $class -> _new($_[1]); | |
} else { | |
$x = $class -> _copy($_[0]); | |
$y = ref($_[1]) ? $_[1] : $class -> _new($_[1]); | |
} | |
return $class -> _div($x, $y); | |
}, | |
'%' => sub { | |
my $class = ref $_[0]; | |
my ($x, $y); | |
if ($_[2]) { # if swapped | |
$y = $_[0]; | |
$x = ref($_[1]) ? $_[1] : $class -> _new($_[1]); | |
} else { | |
$x = $class -> _copy($_[0]); | |
$y = ref($_[1]) ? $_[1] : $class -> _new($_[1]); | |
} | |
return $class -> _mod($x, $y); | |
}, | |
'**' => sub { | |
my $class = ref $_[0]; | |
my ($x, $y); | |
if ($_[2]) { # if swapped | |
$y = $_[0]; | |
$x = ref($_[1]) ? $_[1] : $class -> _new($_[1]); | |
} else { | |
$x = $class -> _copy($_[0]); | |
$y = ref($_[1]) ? $_[1] : $class -> _new($_[1]); | |
} | |
return $class -> _pow($x, $y); | |
}, | |
'<<' => sub { | |
my $class = ref $_[0]; | |
my ($x, $y); | |
if ($_[2]) { # if swapped | |
$y = $class -> _num($_[0]); | |
$x = ref($_[1]) ? $_[1] : $class -> _new($_[1]); | |
} else { | |
$x = $_[0]; | |
$y = ref($_[1]) ? $class -> _num($_[1]) : $_[1]; | |
} | |
return $class -> _blsft($x, $y); | |
}, | |
'>>' => sub { | |
my $class = ref $_[0]; | |
my ($x, $y); | |
if ($_[2]) { # if swapped | |
$y = $_[0]; | |
$x = ref($_[1]) ? $_[1] : $class -> _new($_[1]); | |
} else { | |
$x = $class -> _copy($_[0]); | |
$y = ref($_[1]) ? $_[1] : $class -> _new($_[1]); | |
} | |
return $class -> _brsft($x, $y); | |
}, | |
# overload key: num_comparison | |
'<' => sub { | |
my $class = ref $_[0]; | |
my ($x, $y); | |
if ($_[2]) { # if swapped | |
$y = $_[0]; | |
$x = ref($_[1]) ? $_[1] : $class -> _new($_[1]); | |
} else { | |
$x = $class -> _copy($_[0]); | |
$y = ref($_[1]) ? $_[1] : $class -> _new($_[1]); | |
} | |
return $class -> _acmp($x, $y) < 0; | |
}, | |
'<=' => sub { | |
my $class = ref $_[0]; | |
my ($x, $y); | |
if ($_[2]) { # if swapped | |
$y = $_[0]; | |
$x = ref($_[1]) ? $_[1] : $class -> _new($_[1]); | |
} else { | |
$x = $class -> _copy($_[0]); | |
$y = ref($_[1]) ? $_[1] : $class -> _new($_[1]); | |
} | |
return $class -> _acmp($x, $y) <= 0; | |
}, | |
'>' => sub { | |
my $class = ref $_[0]; | |
my ($x, $y); | |
if ($_[2]) { # if swapped | |
$y = $_[0]; | |
$x = ref($_[1]) ? $_[1] : $class -> _new($_[1]); | |
} else { | |
$x = $class -> _copy($_[0]); | |
$y = ref($_[1]) ? $_[1] : $class -> _new($_[1]); | |
} | |
return $class -> _acmp($x, $y) > 0; | |
}, | |
'>=' => sub { | |
my $class = ref $_[0]; | |
my ($x, $y); | |
if ($_[2]) { # if swapped | |
$y = $_[0]; | |
$x = ref($_[1]) ? $_[1] : $class -> _new($_[1]); | |
} else { | |
$x = $class -> _copy($_[0]); | |
$y = ref($_[1]) ? $_[1] : $class -> _new($_[1]); | |
} | |
return $class -> _acmp($x, $y) >= 0; | |
}, | |
'==' => sub { | |
my $class = ref $_[0]; | |
my $x = $class -> _copy($_[0]); | |
my $y = ref($_[1]) ? $_[1] : $class -> _new($_[1]); | |
return $class -> _acmp($x, $y) == 0; | |
}, | |
'!=' => sub { | |
my $class = ref $_[0]; | |
my $x = $class -> _copy($_[0]); | |
my $y = ref($_[1]) ? $_[1] : $class -> _new($_[1]); | |
return $class -> _acmp($x, $y) != 0; | |
}, | |
# overload key: 3way_comparison | |
'<=>' => sub { | |
my $class = ref $_[0]; | |
my ($x, $y); | |
if ($_[2]) { # if swapped | |
$y = $_[0]; | |
$x = ref($_[1]) ? $_[1] : $class -> _new($_[1]); | |
} else { | |
$x = $class -> _copy($_[0]); | |
$y = ref($_[1]) ? $_[1] : $class -> _new($_[1]); | |
} | |
return $class -> _acmp($x, $y); | |
}, | |
# overload key: binary | |
'&' => sub { | |
my $class = ref $_[0]; | |
my ($x, $y); | |
if ($_[2]) { # if swapped | |
$y = $_[0]; | |
$x = ref($_[1]) ? $_[1] : $class -> _new($_[1]); | |
} else { | |
$x = $class -> _copy($_[0]); | |
$y = ref($_[1]) ? $_[1] : $class -> _new($_[1]); | |
} | |
return $class -> _and($x, $y); | |
}, | |
'|' => sub { | |
my $class = ref $_[0]; | |
my ($x, $y); | |
if ($_[2]) { # if swapped | |
$y = $_[0]; | |
$x = ref($_[1]) ? $_[1] : $class -> _new($_[1]); | |
} else { | |
$x = $class -> _copy($_[0]); | |
$y = ref($_[1]) ? $_[1] : $class -> _new($_[1]); | |
} | |
return $class -> _or($x, $y); | |
}, | |
'^' => sub { | |
my $class = ref $_[0]; | |
my ($x, $y); | |
if ($_[2]) { # if swapped | |
$y = $_[0]; | |
$x = ref($_[1]) ? $_[1] : $class -> _new($_[1]); | |
} else { | |
$x = $class -> _copy($_[0]); | |
$y = ref($_[1]) ? $_[1] : $class -> _new($_[1]); | |
} | |
return $class -> _xor($x, $y); | |
}, | |
# overload key: func | |
'abs' => sub { $_[0] }, | |
'sqrt' => sub { | |
my $class = ref $_[0]; | |
return $class -> _sqrt($class -> _copy($_[0])); | |
}, | |
'int' => sub { $_[0] }, | |
# overload key: conversion | |
'bool' => sub { ref($_[0]) -> _is_zero($_[0]) ? '' : 1; }, | |
'""' => sub { ref($_[0]) -> _str($_[0]); }, | |
'0+' => sub { ref($_[0]) -> _num($_[0]); }, | |
'=' => sub { ref($_[0]) -> _copy($_[0]); }, | |
; | |
sub _new { | |
croak "@{[(caller 0)[3]]} method not implemented"; | |
} | |
sub _zero { | |
my $class = shift; | |
return $class -> _new("0"); | |
} | |
sub _one { | |
my $class = shift; | |
return $class -> _new("1"); | |
} | |
sub _two { | |
my $class = shift; | |
return $class -> _new("2"); | |
} | |
sub _ten { | |
my $class = shift; | |
return $class -> _new("10"); | |
} | |
sub _1ex { | |
my ($class, $exp) = @_; | |
$exp = $class -> _num($exp) if ref($exp); | |
return $class -> _new("1" . ("0" x $exp)); | |
} | |
sub _copy { | |
my ($class, $x) = @_; | |
return $class -> _new($class -> _str($x)); | |
} | |
# catch and throw away | |
sub import { } | |
############################################################################## | |
# convert back to string and number | |
sub _str { | |
# Convert number from internal base 1eN format to string format. Internal | |
# format is always normalized, i.e., no leading zeros. | |
croak "@{[(caller 0)[3]]} method not implemented"; | |
} | |
sub _num { | |
my ($class, $x) = @_; | |
0 + $class -> _str($x); | |
} | |
############################################################################## | |
# actual math code | |
sub _add { | |
croak "@{[(caller 0)[3]]} method not implemented"; | |
} | |
sub _sub { | |
croak "@{[(caller 0)[3]]} method not implemented"; | |
} | |
sub _mul { | |
my ($class, $x, $y) = @_; | |
my $sum = $class -> _zero(); | |
my $i = $class -> _zero(); | |
while ($class -> _acmp($i, $y) < 0) { | |
$sum = $class -> _add($sum, $x); | |
$i = $class -> _inc($i); | |
} | |
return $sum; | |
} | |
sub _div { | |
my ($class, $x, $y) = @_; | |
croak "@{[(caller 0)[3]]} requires non-zero divisor" | |
if $class -> _is_zero($y); | |
my $r = $class -> _copy($x); | |
my $q = $class -> _zero(); | |
while ($class -> _acmp($r, $y) >= 0) { | |
$q = $class -> _inc($q); | |
$r = $class -> _sub($r, $y); | |
} | |
return $q, $r if wantarray; | |
return $q; | |
} | |
sub _inc { | |
my ($class, $x) = @_; | |
$class -> _add($x, $class -> _one()); | |
} | |
sub _dec { | |
my ($class, $x) = @_; | |
$class -> _sub($x, $class -> _one()); | |
} | |
############################################################################## | |
# testing | |
sub _acmp { | |
# Compare two (absolute) values. Return -1, 0, or 1. | |
my ($class, $x, $y) = @_; | |
my $xstr = $class -> _str($x); | |
my $ystr = $class -> _str($y); | |
length($xstr) <=> length($ystr) || $xstr cmp $ystr; | |
} | |
sub _len { | |
my ($class, $x) = @_; | |
CORE::length($class -> _str($x)); | |
} | |
sub _alen { | |
my ($class, $x) = @_; | |
$class -> _len($x); | |
} | |
sub _digit { | |
my ($class, $x, $n) = @_; | |
substr($class ->_str($x), -($n+1), 1); | |
} | |
sub _digitsum { | |
my ($class, $x) = @_; | |
my $len = $class -> _len($x); | |
my $sum = $class -> _zero(); | |
for (my $i = 0 ; $i < $len ; ++$i) { | |
my $digit = $class -> _digit($x, $i); | |
$digit = $class -> _new($digit); | |
$sum = $class -> _add($sum, $digit); | |
} | |
return $sum; | |
} | |
sub _zeros { | |
my ($class, $x) = @_; | |
my $str = $class -> _str($x); | |
$str =~ /[^0](0*)\z/ ? CORE::length($1) : 0; | |
} | |
############################################################################## | |
# _is_* routines | |
sub _is_zero { | |
# return true if arg is zero | |
my ($class, $x) = @_; | |
$class -> _str($x) == 0; | |
} | |
sub _is_even { | |
# return true if arg is even | |
my ($class, $x) = @_; | |
substr($class -> _str($x), -1, 1) % 2 == 0; | |
} | |
sub _is_odd { | |
# return true if arg is odd | |
my ($class, $x) = @_; | |
substr($class -> _str($x), -1, 1) % 2 != 0; | |
} | |
sub _is_one { | |
# return true if arg is one | |
my ($class, $x) = @_; | |
$class -> _str($x) == 1; | |
} | |
sub _is_two { | |
# return true if arg is two | |
my ($class, $x) = @_; | |
$class -> _str($x) == 2; | |
} | |
sub _is_ten { | |
# return true if arg is ten | |
my ($class, $x) = @_; | |
$class -> _str($x) == 10; | |
} | |
############################################################################### | |
# check routine to test internal state for corruptions | |
sub _check { | |
# used by the test suite | |
my ($class, $x) = @_; | |
return "Input is undefined" unless defined $x; | |
return "$x is not a reference" unless ref($x); | |
return 0; | |
} | |
############################################################################### | |
sub _mod { | |
# modulus | |
my ($class, $x, $y) = @_; | |
croak "@{[(caller 0)[3]]} requires non-zero second operand" | |
if $class -> _is_zero($y); | |
if ($class -> can('_div')) { | |
$x = $class -> _copy($x); | |
my ($q, $r) = $class -> _div($x, $y); | |
return $r; | |
} else { | |
my $r = $class -> _copy($x); | |
while ($class -> _acmp($r, $y) >= 0) { | |
$r = $class -> _sub($r, $y); | |
} | |
return $r; | |
} | |
} | |
############################################################################## | |
# shifts | |
sub _rsft { | |
my ($class, $x, $n, $b) = @_; | |
$b = $class -> _new($b) unless ref $b; | |
return scalar $class -> _div($x, $class -> _pow($class -> _copy($b), $n)); | |
} | |
sub _lsft { | |
my ($class, $x, $n, $b) = @_; | |
$b = $class -> _new($b) unless ref $b; | |
return $class -> _mul($x, $class -> _pow($class -> _copy($b), $n)); | |
} | |
sub _pow { | |
# power of $x to $y | |
my ($class, $x, $y) = @_; | |
if ($class -> _is_zero($y)) { | |
return $class -> _one(); # y == 0 => x => 1 | |
} | |
if (($class -> _is_one($x)) || # x == 1 | |
($class -> _is_one($y))) # or y == 1 | |
{ | |
return $x; | |
} | |
if ($class -> _is_zero($x)) { | |
return $class -> _zero(); # 0 ** y => 0 (if not y <= 0) | |
} | |
my $pow2 = $class -> _one(); | |
my $y_bin = $class -> _as_bin($y); | |
$y_bin =~ s/^0b//; | |
my $len = length($y_bin); | |
while (--$len > 0) { | |
$pow2 = $class -> _mul($pow2, $x) if substr($y_bin, $len, 1) eq '1'; | |
$x = $class -> _mul($x, $x); | |
} | |
$x = $class -> _mul($x, $pow2); | |
return $x; | |
} | |
sub _nok { | |
# Return binomial coefficient (n over k). | |
my ($class, $n, $k) = @_; | |
# If k > n/2, or, equivalently, 2*k > n, compute nok(n, k) as | |
# nok(n, n-k), to minimize the number if iterations in the loop. | |
{ | |
my $twok = $class -> _mul($class -> _two(), $class -> _copy($k)); | |
if ($class -> _acmp($twok, $n) > 0) { | |
$k = $class -> _sub($class -> _copy($n), $k); | |
} | |
} | |
# Example: | |
# | |
# / 7 \ 7! 1*2*3*4 * 5*6*7 5 * 6 * 7 | |
# | | = --------- = --------------- = --------- = ((5 * 6) / 2 * 7) / 3 | |
# \ 3 / (7-3)! 3! 1*2*3*4 * 1*2*3 1 * 2 * 3 | |
# | |
# Equivalently, _nok(11, 5) is computed as | |
# | |
# (((((((7 * 8) / 2) * 9) / 3) * 10) / 4) * 11) / 5 | |
if ($class -> _is_zero($k)) { | |
return $class -> _one(); | |
} | |
# Make a copy of the original n, in case the subclass modifies n in-place. | |
my $n_orig = $class -> _copy($n); | |
# n = 5, f = 6, d = 2 (cf. example above) | |
$n = $class -> _sub($n, $k); | |
$n = $class -> _inc($n); | |
my $f = $class -> _copy($n); | |
$f = $class -> _inc($f); | |
my $d = $class -> _two(); | |
# while f <= n (the original n, that is) ... | |
while ($class -> _acmp($f, $n_orig) <= 0) { | |
$n = $class -> _mul($n, $f); | |
$n = $class -> _div($n, $d); | |
$f = $class -> _inc($f); | |
$d = $class -> _inc($d); | |
} | |
return $n; | |
} | |
sub _fac { | |
# factorial | |
my ($class, $x) = @_; | |
my $two = $class -> _two(); | |
if ($class -> _acmp($x, $two) < 0) { | |
return $class -> _one(); | |
} | |
my $i = $class -> _copy($x); | |
while ($class -> _acmp($i, $two) > 0) { | |
$i = $class -> _dec($i); | |
$x = $class -> _mul($x, $i); | |
} | |
return $x; | |
} | |
sub _dfac { | |
# double factorial | |
my ($class, $x) = @_; | |
my $two = $class -> _two(); | |
if ($class -> _acmp($x, $two) < 0) { | |
return $class -> _one(); | |
} | |
my $i = $class -> _copy($x); | |
while ($class -> _acmp($i, $two) > 0) { | |
$i = $class -> _sub($i, $two); | |
$x = $class -> _mul($x, $i); | |
} | |
return $x; | |
} | |
sub _log_int { | |
# calculate integer log of $x to base $base | |
# calculate integer log of $x to base $base | |
# ref to array, ref to array - return ref to array | |
my ($class, $x, $base) = @_; | |
# X == 0 => NaN | |
return if $class -> _is_zero($x); | |
$base = $class -> _new(2) unless defined($base); | |
$base = $class -> _new($base) unless ref($base); | |
# BASE 0 or 1 => NaN | |
return if $class -> _is_zero($base) || $class -> _is_one($base); | |
# X == 1 => 0 (is exact) | |
if ($class -> _is_one($x)) { | |
return $class -> _zero(), 1; | |
} | |
my $cmp = $class -> _acmp($x, $base); | |
# X == BASE => 1 (is exact) | |
if ($cmp == 0) { | |
return $class -> _one(), 1; | |
} | |
# 1 < X < BASE => 0 (is truncated) | |
if ($cmp < 0) { | |
return $class -> _zero(), 0; | |
} | |
my $y; | |
# log(x) / log(b) = log(xm * 10^xe) / log(bm * 10^be) | |
# = (log(xm) + xe*(log(10))) / (log(bm) + be*log(10)) | |
{ | |
my $x_str = $class -> _str($x); | |
my $b_str = $class -> _str($base); | |
my $xm = "." . $x_str; | |
my $bm = "." . $b_str; | |
my $xe = length($x_str); | |
my $be = length($b_str); | |
my $log10 = log(10); | |
my $guess = int((log($xm) + $xe * $log10) / (log($bm) + $be * $log10)); | |
$y = $class -> _new($guess); | |
} | |
my $trial = $class -> _pow($class -> _copy($base), $y); | |
my $acmp = $class -> _acmp($trial, $x); | |
# Did we get the exact result? | |
return $y, 1 if $acmp == 0; | |
# Too small? | |
while ($acmp < 0) { | |
$trial = $class -> _mul($trial, $base); | |
$y = $class -> _inc($y); | |
$acmp = $class -> _acmp($trial, $x); | |
} | |
# Too big? | |
while ($acmp > 0) { | |
$trial = $class -> _div($trial, $base); | |
$y = $class -> _dec($y); | |
$acmp = $class -> _acmp($trial, $x); | |
} | |
return $y, 1 if $acmp == 0; # result is exact | |
return $y, 0; # result is too small | |
} | |
sub _sqrt { | |
# square-root of $y in place | |
my ($class, $y) = @_; | |
return $y if $class -> _is_zero($y); | |
my $y_str = $class -> _str($y); | |
my $y_len = length($y_str); | |
# Compute the guess $x. | |
my $xm; | |
my $xe; | |
if ($y_len % 2 == 0) { | |
$xm = sqrt("." . $y_str); | |
$xe = $y_len / 2; | |
$xm = sprintf "%.0f", int($xm * 1e15); | |
$xe -= 15; | |
} else { | |
$xm = sqrt(".0" . $y_str); | |
$xe = ($y_len + 1) / 2; | |
$xm = sprintf "%.0f", int($xm * 1e16); | |
$xe -= 16; | |
} | |
my $x; | |
if ($xe < 0) { | |
$x = substr $xm, 0, length($xm) + $xe; | |
} else { | |
$x = $xm . ("0" x $xe); | |
} | |
$x = $class -> _new($x); | |
# Newton's method for computing square root of y | |
# | |
# x(i+1) = x(i) - f(x(i)) / f'(x(i)) | |
# = x(i) - (x(i)^2 - y) / (2 * x(i)) # use if x(i)^2 > y | |
# = y(i) + (y - x(i)^2) / (2 * x(i)) # use if x(i)^2 < y | |
# Determine if x, our guess, is too small, correct, or too large. | |
my $xsq = $class -> _mul($class -> _copy($x), $x); # x(i)^2 | |
my $acmp = $class -> _acmp($xsq, $y); # x(i)^2 <=> y | |
# Only assign a value to this variable if we will be using it. | |
my $two; | |
$two = $class -> _two() if $acmp != 0; | |
# If x is too small, do one iteration of Newton's method. Since the | |
# function f(x) = x^2 - y is concave and monotonically increasing, the next | |
# guess for x will either be correct or too large. | |
if ($acmp < 0) { | |
# x(i+1) = x(i) + (y - x(i)^2) / (2 * x(i)) | |
my $numer = $class -> _sub($class -> _copy($y), $xsq); # y - x(i)^2 | |
my $denom = $class -> _mul($class -> _copy($two), $x); # 2 * x(i) | |
my $delta = $class -> _div($numer, $denom); | |
unless ($class -> _is_zero($delta)) { | |
$x = $class -> _add($x, $delta); | |
$xsq = $class -> _mul($class -> _copy($x), $x); # x(i)^2 | |
$acmp = $class -> _acmp($xsq, $y); # x(i)^2 <=> y | |
} | |
} | |
# If our guess for x is too large, apply Newton's method repeatedly until | |
# we either have got the correct value, or the delta is zero. | |
while ($acmp > 0) { | |
# x(i+1) = x(i) - (x(i)^2 - y) / (2 * x(i)) | |
my $numer = $class -> _sub($xsq, $y); # x(i)^2 - y | |
my $denom = $class -> _mul($class -> _copy($two), $x); # 2 * x(i) | |
my $delta = $class -> _div($numer, $denom); | |
last if $class -> _is_zero($delta); | |
$x = $class -> _sub($x, $delta); | |
$xsq = $class -> _mul($class -> _copy($x), $x); # x(i)^2 | |
$acmp = $class -> _acmp($xsq, $y); # x(i)^2 <=> y | |
} | |
# When the delta is zero, our value for x might still be too large. We | |
# require that the outout is either exact or too small (i.e., rounded down | |
# to the nearest integer), so do a final check. | |
while ($acmp > 0) { | |
$x = $class -> _dec($x); | |
$xsq = $class -> _mul($class -> _copy($x), $x); # x(i)^2 | |
$acmp = $class -> _acmp($xsq, $y); # x(i)^2 <=> y | |
} | |
return $x; | |
} | |
sub _root { | |
my ($class, $y, $n) = @_; | |
return $y if $class -> _is_zero($y) || $class -> _is_one($y) || | |
$class -> _is_one($n); | |
# If y <= n, the result is always (truncated to) 1. | |
return $class -> _one() if $class -> _acmp($y, $n) <= 0; | |
# Compute the initial guess x of y^(1/n). When n is large, Newton's method | |
# converges slowly if the "guess" (initial value) is poor, so we need a | |
# good guess. It the guess is too small, the next guess will be too large, | |
# and from then on all guesses are too large. | |
my $DEBUG = 0; | |
# Split y into mantissa and exponent in base 10, so that | |
# | |
# y = xm * 10^xe, where 0 < xm < 1 and xe is an integer | |
my $y_str = $class -> _str($y); | |
my $ym = "." . $y_str; | |
my $ye = length($y_str); | |
# From this compute the approximate base 10 logarithm of y | |
# | |
# log_10(y) = log_10(ym) + log_10(ye^10) | |
# = log(ym)/log(10) + ye | |
my $log10y = log($ym) / log(10) + $ye; | |
# And from this compute the approximate base 10 logarithm of x, where | |
# x = y^(1/n) | |
# | |
# log_10(x) = log_10(y)/n | |
my $log10x = $log10y / $class -> _num($n); | |
# From this compute xm and xe, the mantissa and exponent (in base 10) of x, | |
# where 1 < xm <= 10 and xe is an integer. | |
my $xe = int $log10x; | |
my $xm = 10 ** ($log10x - $xe); | |
# Scale the mantissa and exponent to increase the integer part of ym, which | |
# gives us better accuracy. | |
if ($DEBUG) { | |
print "\n"; | |
print "y_str = $y_str\n"; | |
print "ym = $ym\n"; | |
print "ye = $ye\n"; | |
print "log10y = $log10y\n"; | |
print "log10x = $log10x\n"; | |
print "xm = $xm\n"; | |
print "xe = $xe\n"; | |
} | |
my $d = $xe < 15 ? $xe : 15; | |
$xm *= 10 ** $d; | |
$xe -= $d; | |
if ($DEBUG) { | |
print "\n"; | |
print "xm = $xm\n"; | |
print "xe = $xe\n"; | |
} | |
# If the mantissa is not an integer, round up to nearest integer, and then | |
# convert the number to a string. It is important to always round up due to | |
# how Newton's method behaves in this case. If the initial guess is too | |
# small, the next guess will be too large, after which every succeeding | |
# guess converges the correct value from above. Now, if the initial guess | |
# is too small and n is large, the next guess will be much too large and | |
# require a large number of iterations to get close to the solution. | |
# Because of this, we are likely to find the solution faster if we make | |
# sure the initial guess is not too small. | |
my $xm_int = int($xm); | |
my $x_str = sprintf '%.0f', $xm > $xm_int ? $xm_int + 1 : $xm_int; | |
$x_str .= "0" x $xe; | |
my $x = $class -> _new($x_str); | |
if ($DEBUG) { | |
print "xm = $xm\n"; | |
print "xe = $xe\n"; | |
print "\n"; | |
print "x_str = $x_str (initial guess)\n"; | |
print "\n"; | |
} | |
# Use Newton's method for computing n'th root of y. | |
# | |
# x(i+1) = x(i) - f(x(i)) / f'(x(i)) | |
# = x(i) - (x(i)^n - y) / (n * x(i)^(n-1)) # use if x(i)^n > y | |
# = x(i) + (y - x(i)^n) / (n * x(i)^(n-1)) # use if x(i)^n < y | |
# Determine if x, our guess, is too small, correct, or too large. Rather | |
# than computing x(i)^n and x(i)^(n-1) directly, compute x(i)^(n-1) and | |
# then the same value multiplied by x. | |
my $nm1 = $class -> _dec($class -> _copy($n)); # n-1 | |
my $xpownm1 = $class -> _pow($class -> _copy($x), $nm1); # x(i)^(n-1) | |
my $xpown = $class -> _mul($class -> _copy($xpownm1), $x); # x(i)^n | |
my $acmp = $class -> _acmp($xpown, $y); # x(i)^n <=> y | |
if ($DEBUG) { | |
print "\n"; | |
print "x = ", $class -> _str($x), "\n"; | |
print "x^n = ", $class -> _str($xpown), "\n"; | |
print "y = ", $class -> _str($y), "\n"; | |
print "acmp = $acmp\n"; | |
} | |
# If x is too small, do one iteration of Newton's method. Since the | |
# function f(x) = x^n - y is concave and monotonically increasing, the next | |
# guess for x will either be correct or too large. | |
if ($acmp < 0) { | |
# x(i+1) = x(i) + (y - x(i)^n) / (n * x(i)^(n-1)) | |
my $numer = $class -> _sub($class -> _copy($y), $xpown); # y - x(i)^n | |
my $denom = $class -> _mul($class -> _copy($n), $xpownm1); # n * x(i)^(n-1) | |
my $delta = $class -> _div($numer, $denom); | |
if ($DEBUG) { | |
print "\n"; | |
print "numer = ", $class -> _str($numer), "\n"; | |
print "denom = ", $class -> _str($denom), "\n"; | |
print "delta = ", $class -> _str($delta), "\n"; | |
} | |
unless ($class -> _is_zero($delta)) { | |
$x = $class -> _add($x, $delta); | |
$xpownm1 = $class -> _pow($class -> _copy($x), $nm1); # x(i)^(n-1) | |
$xpown = $class -> _mul($class -> _copy($xpownm1), $x); # x(i)^n | |
$acmp = $class -> _acmp($xpown, $y); # x(i)^n <=> y | |
if ($DEBUG) { | |
print "\n"; | |
print "x = ", $class -> _str($x), "\n"; | |
print "x^n = ", $class -> _str($xpown), "\n"; | |
print "y = ", $class -> _str($y), "\n"; | |
print "acmp = $acmp\n"; | |
} | |
} | |
} | |
# If our guess for x is too large, apply Newton's method repeatedly until | |
# we either have got the correct value, or the delta is zero. | |
while ($acmp > 0) { | |
# x(i+1) = x(i) - (x(i)^n - y) / (n * x(i)^(n-1)) | |
my $numer = $class -> _sub($class -> _copy($xpown), $y); # x(i)^n - y | |
my $denom = $class -> _mul($class -> _copy($n), $xpownm1); # n * x(i)^(n-1) | |
if ($DEBUG) { | |
print "numer = ", $class -> _str($numer), "\n"; | |
print "denom = ", $class -> _str($denom), "\n"; | |
} | |
my $delta = $class -> _div($numer, $denom); | |
if ($DEBUG) { | |
print "delta = ", $class -> _str($delta), "\n"; | |
} | |
last if $class -> _is_zero($delta); | |
$x = $class -> _sub($x, $delta); | |
$xpownm1 = $class -> _pow($class -> _copy($x), $nm1); # x(i)^(n-1) | |
$xpown = $class -> _mul($class -> _copy($xpownm1), $x); # x(i)^n | |
$acmp = $class -> _acmp($xpown, $y); # x(i)^n <=> y | |
if ($DEBUG) { | |
print "\n"; | |
print "x = ", $class -> _str($x), "\n"; | |
print "x^n = ", $class -> _str($xpown), "\n"; | |
print "y = ", $class -> _str($y), "\n"; | |
print "acmp = $acmp\n"; | |
} | |
} | |
# When the delta is zero, our value for x might still be too large. We | |
# require that the outout is either exact or too small (i.e., rounded down | |
# to the nearest integer), so do a final check. | |
while ($acmp > 0) { | |
$x = $class -> _dec($x); | |
$xpown = $class -> _pow($class -> _copy($x), $n); # x(i)^n | |
$acmp = $class -> _acmp($xpown, $y); # x(i)^n <=> y | |
} | |
return $x; | |
} | |
############################################################################## | |
# binary stuff | |
sub _and { | |
my ($class, $x, $y) = @_; | |
return $x if $class -> _acmp($x, $y) == 0; | |
my $m = $class -> _one(); | |
my $mask = $class -> _new("32768"); | |
my ($xr, $yr); # remainders after division | |
my $xc = $class -> _copy($x); | |
my $yc = $class -> _copy($y); | |
my $z = $class -> _zero(); | |
until ($class -> _is_zero($xc) || $class -> _is_zero($yc)) { | |
($xc, $xr) = $class -> _div($xc, $mask); | |
($yc, $yr) = $class -> _div($yc, $mask); | |
my $bits = $class -> _new($class -> _num($xr) & $class -> _num($yr)); | |
$z = $class -> _add($z, $class -> _mul($bits, $m)); | |
$m = $class -> _mul($m, $mask); | |
} | |
return $z; | |
} | |
sub _xor { | |
my ($class, $x, $y) = @_; | |
return $class -> _zero() if $class -> _acmp($x, $y) == 0; | |
my $m = $class -> _one(); | |
my $mask = $class -> _new("32768"); | |
my ($xr, $yr); # remainders after division | |
my $xc = $class -> _copy($x); | |
my $yc = $class -> _copy($y); | |
my $z = $class -> _zero(); | |
until ($class -> _is_zero($xc) || $class -> _is_zero($yc)) { | |
($xc, $xr) = $class -> _div($xc, $mask); | |
($yc, $yr) = $class -> _div($yc, $mask); | |
my $bits = $class -> _new($class -> _num($xr) ^ $class -> _num($yr)); | |
$z = $class -> _add($z, $class -> _mul($bits, $m)); | |
$m = $class -> _mul($m, $mask); | |
} | |
# The loop above stops when the smallest of the two numbers is exhausted. | |
# The remainder of the longer one will survive bit-by-bit, so we simple | |
# multiply-add it in. | |
$z = $class -> _add($z, $class -> _mul($xc, $m)) | |
unless $class -> _is_zero($xc); | |
$z = $class -> _add($z, $class -> _mul($yc, $m)) | |
unless $class -> _is_zero($yc); | |
return $z; | |
} | |
sub _or { | |
my ($class, $x, $y) = @_; | |
return $x if $class -> _acmp($x, $y) == 0; # shortcut (see _and) | |
my $m = $class -> _one(); | |
my $mask = $class -> _new("32768"); | |
my ($xr, $yr); # remainders after division | |
my $xc = $class -> _copy($x); | |
my $yc = $class -> _copy($y); | |
my $z = $class -> _zero(); | |
until ($class -> _is_zero($xc) || $class -> _is_zero($yc)) { | |
($xc, $xr) = $class -> _div($xc, $mask); | |
($yc, $yr) = $class -> _div($yc, $mask); | |
my $bits = $class -> _new($class -> _num($xr) | $class -> _num($yr)); | |
$z = $class -> _add($z, $class -> _mul($bits, $m)); | |
$m = $class -> _mul($m, $mask); | |
} | |
# The loop above stops when the smallest of the two numbers is exhausted. | |
# The remainder of the longer one will survive bit-by-bit, so we simple | |
# multiply-add it in. | |
$z = $class -> _add($z, $class -> _mul($xc, $m)) | |
unless $class -> _is_zero($xc); | |
$z = $class -> _add($z, $class -> _mul($yc, $m)) | |
unless $class -> _is_zero($yc); | |
return $z; | |
} | |
sub _sand { | |
my ($class, $x, $sx, $y, $sy) = @_; | |
return ($class -> _zero(), '+') | |
if $class -> _is_zero($x) || $class -> _is_zero($y); | |
my $sign = $sx eq '-' && $sy eq '-' ? '-' : '+'; | |
my ($bx, $by); | |
if ($sx eq '-') { # if x is negative | |
# two's complement: inc (dec unsigned value) and flip all "bits" in $bx | |
$bx = $class -> _copy($x); | |
$bx = $class -> _dec($bx); | |
$bx = $class -> _as_hex($bx); | |
$bx =~ s/^-?0x//; | |
$bx =~ tr<0123456789abcdef> | |
<\x0f\x0e\x0d\x0c\x0b\x0a\x09\x08\x07\x06\x05\x04\x03\x02\x01\x00>; | |
} else { # if x is positive | |
$bx = $class -> _as_hex($x); # get binary representation | |
$bx =~ s/^-?0x//; | |
$bx =~ tr<fedcba9876543210> | |
<\x0f\x0e\x0d\x0c\x0b\x0a\x09\x08\x07\x06\x05\x04\x03\x02\x01\x00>; | |
} | |
if ($sy eq '-') { # if y is negative | |
# two's complement: inc (dec unsigned value) and flip all "bits" in $by | |
$by = $class -> _copy($y); | |
$by = $class -> _dec($by); | |
$by = $class -> _as_hex($by); | |
$by =~ s/^-?0x//; | |
$by =~ tr<0123456789abcdef> | |
<\x0f\x0e\x0d\x0c\x0b\x0a\x09\x08\x07\x06\x05\x04\x03\x02\x01\x00>; | |
} else { | |
$by = $class -> _as_hex($y); # get binary representation | |
$by =~ s/^-?0x//; | |
$by =~ tr<fedcba9876543210> | |
<\x0f\x0e\x0d\x0c\x0b\x0a\x09\x08\x07\x06\x05\x04\x03\x02\x01\x00>; | |
} | |
# now we have bit-strings from X and Y, reverse them for padding | |
$bx = reverse $bx; | |
$by = reverse $by; | |
# padd the shorter string | |
my $xx = "\x00"; $xx = "\x0f" if $sx eq '-'; | |
my $yy = "\x00"; $yy = "\x0f" if $sy eq '-'; | |
my $diff = CORE::length($bx) - CORE::length($by); | |
if ($diff > 0) { | |
# if $yy eq "\x00", we can cut $bx, otherwise we need to padd $by | |
$by .= $yy x $diff; | |
} elsif ($diff < 0) { | |
# if $xx eq "\x00", we can cut $by, otherwise we need to padd $bx | |
$bx .= $xx x abs($diff); | |
} | |
# and the strings together | |
my $r = $bx & $by; | |
# and reverse the result again | |
$bx = reverse $r; | |
# One of $bx or $by was negative, so need to flip bits in the result. In both | |
# cases (one or two of them negative, or both positive) we need to get the | |
# characters back. | |
if ($sign eq '-') { | |
$bx =~ tr<\x0f\x0e\x0d\x0c\x0b\x0a\x09\x08\x07\x06\x05\x04\x03\x02\x01\x00> | |
<0123456789abcdef>; | |
} else { | |
$bx =~ tr<\x0f\x0e\x0d\x0c\x0b\x0a\x09\x08\x07\x06\x05\x04\x03\x02\x01\x00> | |
<fedcba9876543210>; | |
} | |
# leading zeros will be stripped by _from_hex() | |
$bx = '0x' . $bx; | |
$bx = $class -> _from_hex($bx); | |
$bx = $class -> _inc($bx) if $sign eq '-'; | |
# avoid negative zero | |
$sign = '+' if $class -> _is_zero($bx); | |
return $bx, $sign; | |
} | |
sub _sxor { | |
my ($class, $x, $sx, $y, $sy) = @_; | |
return ($class -> _zero(), '+') | |
if $class -> _is_zero($x) && $class -> _is_zero($y); | |
my $sign = $sx ne $sy ? '-' : '+'; | |
my ($bx, $by); | |
if ($sx eq '-') { # if x is negative | |
# two's complement: inc (dec unsigned value) and flip all "bits" in $bx | |
$bx = $class -> _copy($x); | |
$bx = $class -> _dec($bx); | |
$bx = $class -> _as_hex($bx); | |
$bx =~ s/^-?0x//; | |
$bx =~ tr<0123456789abcdef> | |
<\x0f\x0e\x0d\x0c\x0b\x0a\x09\x08\x07\x06\x05\x04\x03\x02\x01\x00>; | |
} else { # if x is positive | |
$bx = $class -> _as_hex($x); # get binary representation | |
$bx =~ s/^-?0x//; | |
$bx =~ tr<fedcba9876543210> | |
<\x0f\x0e\x0d\x0c\x0b\x0a\x09\x08\x07\x06\x05\x04\x03\x02\x01\x00>; | |
} | |
if ($sy eq '-') { # if y is negative | |
# two's complement: inc (dec unsigned value) and flip all "bits" in $by | |
$by = $class -> _copy($y); | |
$by = $class -> _dec($by); | |
$by = $class -> _as_hex($by); | |
$by =~ s/^-?0x//; | |
$by =~ tr<0123456789abcdef> | |
<\x0f\x0e\x0d\x0c\x0b\x0a\x09\x08\x07\x06\x05\x04\x03\x02\x01\x00>; | |
} else { | |
$by = $class -> _as_hex($y); # get binary representation | |
$by =~ s/^-?0x//; | |
$by =~ tr<fedcba9876543210> | |
<\x0f\x0e\x0d\x0c\x0b\x0a\x09\x08\x07\x06\x05\x04\x03\x02\x01\x00>; | |
} | |
# now we have bit-strings from X and Y, reverse them for padding | |
$bx = reverse $bx; | |
$by = reverse $by; | |
# padd the shorter string | |
my $xx = "\x00"; $xx = "\x0f" if $sx eq '-'; | |
my $yy = "\x00"; $yy = "\x0f" if $sy eq '-'; | |
my $diff = CORE::length($bx) - CORE::length($by); | |
if ($diff > 0) { | |
# if $yy eq "\x00", we can cut $bx, otherwise we need to padd $by | |
$by .= $yy x $diff; | |
} elsif ($diff < 0) { | |
# if $xx eq "\x00", we can cut $by, otherwise we need to padd $bx | |
$bx .= $xx x abs($diff); | |
} | |
# xor the strings together | |
my $r = $bx ^ $by; | |
# and reverse the result again | |
$bx = reverse $r; | |
# One of $bx or $by was negative, so need to flip bits in the result. In both | |
# cases (one or two of them negative, or both positive) we need to get the | |
# characters back. | |
if ($sign eq '-') { | |
$bx =~ tr<\x0f\x0e\x0d\x0c\x0b\x0a\x09\x08\x07\x06\x05\x04\x03\x02\x01\x00> | |
<0123456789abcdef>; | |
} else { | |
$bx =~ tr<\x0f\x0e\x0d\x0c\x0b\x0a\x09\x08\x07\x06\x05\x04\x03\x02\x01\x00> | |
<fedcba9876543210>; | |
} | |
# leading zeros will be stripped by _from_hex() | |
$bx = '0x' . $bx; | |
$bx = $class -> _from_hex($bx); | |
$bx = $class -> _inc($bx) if $sign eq '-'; | |
# avoid negative zero | |
$sign = '+' if $class -> _is_zero($bx); | |
return $bx, $sign; | |
} | |
sub _sor { | |
my ($class, $x, $sx, $y, $sy) = @_; | |
return ($class -> _zero(), '+') | |
if $class -> _is_zero($x) && $class -> _is_zero($y); | |
my $sign = $sx eq '-' || $sy eq '-' ? '-' : '+'; | |
my ($bx, $by); | |
if ($sx eq '-') { # if x is negative | |
# two's complement: inc (dec unsigned value) and flip all "bits" in $bx | |
$bx = $class -> _copy($x); | |
$bx = $class -> _dec($bx); | |
$bx = $class -> _as_hex($bx); | |
$bx =~ s/^-?0x//; | |
$bx =~ tr<0123456789abcdef> | |
<\x0f\x0e\x0d\x0c\x0b\x0a\x09\x08\x07\x06\x05\x04\x03\x02\x01\x00>; | |
} else { # if x is positive | |
$bx = $class -> _as_hex($x); # get binary representation | |
$bx =~ s/^-?0x//; | |
$bx =~ tr<fedcba9876543210> | |
<\x0f\x0e\x0d\x0c\x0b\x0a\x09\x08\x07\x06\x05\x04\x03\x02\x01\x00>; | |
} | |
if ($sy eq '-') { # if y is negative | |
# two's complement: inc (dec unsigned value) and flip all "bits" in $by | |
$by = $class -> _copy($y); | |
$by = $class -> _dec($by); | |
$by = $class -> _as_hex($by); | |
$by =~ s/^-?0x//; | |
$by =~ tr<0123456789abcdef> | |
<\x0f\x0e\x0d\x0c\x0b\x0a\x09\x08\x07\x06\x05\x04\x03\x02\x01\x00>; | |
} else { | |
$by = $class -> _as_hex($y); # get binary representation | |
$by =~ s/^-?0x//; | |
$by =~ tr<fedcba9876543210> | |
<\x0f\x0e\x0d\x0c\x0b\x0a\x09\x08\x07\x06\x05\x04\x03\x02\x01\x00>; | |
} | |
# now we have bit-strings from X and Y, reverse them for padding | |
$bx = reverse $bx; | |
$by = reverse $by; | |
# padd the shorter string | |
my $xx = "\x00"; $xx = "\x0f" if $sx eq '-'; | |
my $yy = "\x00"; $yy = "\x0f" if $sy eq '-'; | |
my $diff = CORE::length($bx) - CORE::length($by); | |
if ($diff > 0) { | |
# if $yy eq "\x00", we can cut $bx, otherwise we need to padd $by | |
$by .= $yy x $diff; | |
} elsif ($diff < 0) { | |
# if $xx eq "\x00", we can cut $by, otherwise we need to padd $bx | |
$bx .= $xx x abs($diff); | |
} | |
# or the strings together | |
my $r = $bx | $by; | |
# and reverse the result again | |
$bx = reverse $r; | |
# One of $bx or $by was negative, so need to flip bits in the result. In both | |
# cases (one or two of them negative, or both positive) we need to get the | |
# characters back. | |
if ($sign eq '-') { | |
$bx =~ tr<\x0f\x0e\x0d\x0c\x0b\x0a\x09\x08\x07\x06\x05\x04\x03\x02\x01\x00> | |
<0123456789abcdef>; | |
} else { | |
$bx =~ tr<\x0f\x0e\x0d\x0c\x0b\x0a\x09\x08\x07\x06\x05\x04\x03\x02\x01\x00> | |
<fedcba9876543210>; | |
} | |
# leading zeros will be stripped by _from_hex() | |
$bx = '0x' . $bx; | |
$bx = $class -> _from_hex($bx); | |
$bx = $class -> _inc($bx) if $sign eq '-'; | |
# avoid negative zero | |
$sign = '+' if $class -> _is_zero($bx); | |
return $bx, $sign; | |
} | |
sub _to_bin { | |
# convert the number to a string of binary digits without prefix | |
my ($class, $x) = @_; | |
my $str = ''; | |
my $tmp = $class -> _copy($x); | |
my $chunk = $class -> _new("16777216"); # 2^24 = 24 binary digits | |
my $rem; | |
until ($class -> _acmp($tmp, $chunk) < 0) { | |
($tmp, $rem) = $class -> _div($tmp, $chunk); | |
$str = sprintf("%024b", $class -> _num($rem)) . $str; | |
} | |
unless ($class -> _is_zero($tmp)) { | |
$str = sprintf("%b", $class -> _num($tmp)) . $str; | |
} | |
return length($str) ? $str : '0'; | |
} | |
sub _to_oct { | |
# convert the number to a string of octal digits without prefix | |
my ($class, $x) = @_; | |
my $str = ''; | |
my $tmp = $class -> _copy($x); | |
my $chunk = $class -> _new("16777216"); # 2^24 = 8 octal digits | |
my $rem; | |
until ($class -> _acmp($tmp, $chunk) < 0) { | |
($tmp, $rem) = $class -> _div($tmp, $chunk); | |
$str = sprintf("%08o", $class -> _num($rem)) . $str; | |
} | |
unless ($class -> _is_zero($tmp)) { | |
$str = sprintf("%o", $class -> _num($tmp)) . $str; | |
} | |
return length($str) ? $str : '0'; | |
} | |
sub _to_hex { | |
# convert the number to a string of hexadecimal digits without prefix | |
my ($class, $x) = @_; | |
my $str = ''; | |
my $tmp = $class -> _copy($x); | |
my $chunk = $class -> _new("16777216"); # 2^24 = 6 hexadecimal digits | |
my $rem; | |
until ($class -> _acmp($tmp, $chunk) < 0) { | |
($tmp, $rem) = $class -> _div($tmp, $chunk); | |
$str = sprintf("%06x", $class -> _num($rem)) . $str; | |
} | |
unless ($class -> _is_zero($tmp)) { | |
$str = sprintf("%x", $class -> _num($tmp)) . $str; | |
} | |
return length($str) ? $str : '0'; | |
} | |
sub _as_bin { | |
# convert the number to a string of binary digits with prefix | |
my ($class, $x) = @_; | |
return '0b' . $class -> _to_bin($x); | |
} | |
sub _as_oct { | |
# convert the number to a string of octal digits with prefix | |
my ($class, $x) = @_; | |
return '0' . $class -> _to_oct($x); # yes, 0 becomes "00" | |
} | |
sub _as_hex { | |
# convert the number to a string of hexadecimal digits with prefix | |
my ($class, $x) = @_; | |
return '0x' . $class -> _to_hex($x); | |
} | |
sub _to_bytes { | |
# convert the number to a string of bytes | |
my ($class, $x) = @_; | |
my $str = ''; | |
my $tmp = $class -> _copy($x); | |
my $chunk = $class -> _new("65536"); | |
my $rem; | |
until ($class -> _is_zero($tmp)) { | |
($tmp, $rem) = $class -> _div($tmp, $chunk); | |
$str = pack('n', $class -> _num($rem)) . $str; | |
} | |
$str =~ s/^\0+//; | |
return length($str) ? $str : "\x00"; | |
} | |
*_as_bytes = \&_to_bytes; | |
sub _to_base { | |
# convert the number to a string of digits in various bases | |
my $class = shift; | |
my $x = shift; | |
my $base = shift; | |
$base = $class -> _new($base) unless ref($base); | |
my $collseq; | |
if (@_) { | |
$collseq = shift(); | |
} else { | |
if ($class -> _acmp($base, $class -> _new("94")) <= 0) { | |
$collseq = '0123456789' # 48 .. 57 | |
. 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' # 65 .. 90 | |
. 'abcdefghijklmnopqrstuvwxyz' # 97 .. 122 | |
. '!"#$%&\'()*+,-./' # 33 .. 47 | |
. ':;<=>?@' # 58 .. 64 | |
. '[\\]^_`' # 91 .. 96 | |
. '{|}~'; # 123 .. 126 | |
} else { | |
croak "When base > 94, a collation sequence must be given"; | |
} | |
} | |
my @collseq = split '', $collseq; | |
my $str = ''; | |
my $tmp = $class -> _copy($x); | |
my $rem; | |
until ($class -> _is_zero($tmp)) { | |
($tmp, $rem) = $class -> _div($tmp, $base); | |
my $num = $class -> _num($rem); | |
croak "no character to represent '$num' in collation sequence", | |
" (collation sequence is too short)" if $num > $#collseq; | |
my $chr = $collseq[$num]; | |
$str = $chr . $str; | |
} | |
return "0" unless length $str; | |
return $str; | |
} | |
sub _from_hex { | |
# Convert a string of hexadecimal digits to a number. | |
my ($class, $hex) = @_; | |
$hex =~ s/^0[xX]//; | |
# Find the largest number of hexadecimal digits that we can safely use with | |
# 32 bit integers. There are 4 bits pr hexadecimal digit, and we use only | |
# 31 bits to play safe. This gives us int(31 / 4) = 7. | |
my $len = length $hex; | |
my $rem = 1 + ($len - 1) % 7; | |
# Do the first chunk. | |
my $ret = $class -> _new(int hex substr $hex, 0, $rem); | |
return $ret if $rem == $len; | |
# Do the remaining chunks, if any. | |
my $shift = $class -> _new(1 << (4 * 7)); | |
for (my $offset = $rem ; $offset < $len ; $offset += 7) { | |
my $part = int hex substr $hex, $offset, 7; | |
$ret = $class -> _mul($ret, $shift); | |
$ret = $class -> _add($ret, $class -> _new($part)); | |
} | |
return $ret; | |
} | |
sub _from_oct { | |
# Convert a string of octal digits to a number. | |
my ($class, $oct) = @_; | |
# Find the largest number of octal digits that we can safely use with 32 | |
# bit integers. There are 3 bits pr octal digit, and we use only 31 bits to | |
# play safe. This gives us int(31 / 3) = 10. | |
my $len = length $oct; | |
my $rem = 1 + ($len - 1) % 10; | |
# Do the first chunk. | |
my $ret = $class -> _new(int oct substr $oct, 0, $rem); | |
return $ret if $rem == $len; | |
# Do the remaining chunks, if any. | |
my $shift = $class -> _new(1 << (3 * 10)); | |
for (my $offset = $rem ; $offset < $len ; $offset += 10) { | |
my $part = int oct substr $oct, $offset, 10; | |
$ret = $class -> _mul($ret, $shift); | |
$ret = $class -> _add($ret, $class -> _new($part)); | |
} | |
return $ret; | |
} | |
sub _from_bin { | |
# Convert a string of binary digits to a number. | |
my ($class, $bin) = @_; | |
$bin =~ s/^0[bB]//; | |
# The largest number of binary digits that we can safely use with 32 bit | |
# integers is 31. We use only 31 bits to play safe. | |
my $len = length $bin; | |
my $rem = 1 + ($len - 1) % 31; | |
# Do the first chunk. | |
my $ret = $class -> _new(int oct '0b' . substr $bin, 0, $rem); | |
return $ret if $rem == $len; | |
# Do the remaining chunks, if any. | |
my $shift = $class -> _new(1 << 31); | |
for (my $offset = $rem ; $offset < $len ; $offset += 31) { | |
my $part = int oct '0b' . substr $bin, $offset, 31; | |
$ret = $class -> _mul($ret, $shift); | |
$ret = $class -> _add($ret, $class -> _new($part)); | |
} | |
return $ret; | |
} | |
sub _from_bytes { | |
# convert string of bytes to a number | |
my ($class, $str) = @_; | |
my $x = $class -> _zero(); | |
my $base = $class -> _new("256"); | |
my $n = length($str); | |
for (my $i = 0 ; $i < $n ; ++$i) { | |
$x = $class -> _mul($x, $base); | |
my $byteval = $class -> _new(unpack 'C', substr($str, $i, 1)); | |
$x = $class -> _add($x, $byteval); | |
} | |
return $x; | |
} | |
sub _from_base { | |
# convert a string to a decimal number | |
my $class = shift; | |
my $str = shift; | |
my $base = shift; | |
$base = $class -> _new($base) unless ref($base); | |
my $n = length($str); | |
my $x = $class -> _zero(); | |
my $collseq; | |
if (@_) { | |
$collseq = shift(); | |
} else { | |
if ($class -> _acmp($base, $class -> _new("36")) <= 0) { | |
$str = uc $str; | |
$collseq = '0123456789' . 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'; | |
} elsif ($class -> _acmp($base, $class -> _new("94")) <= 0) { | |
$collseq = '0123456789' # 48 .. 57 | |
. 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' # 65 .. 90 | |
. 'abcdefghijklmnopqrstuvwxyz' # 97 .. 122 | |
. '!"#$%&\'()*+,-./' # 33 .. 47 | |
. ':;<=>?@' # 58 .. 64 | |
. '[\\]^_`' # 91 .. 96 | |
. '{|}~'; # 123 .. 126 | |
} else { | |
croak "When base > 94, a collation sequence must be given"; | |
} | |
$collseq = substr $collseq, 0, $class -> _num($base); | |
} | |
# Create a mapping from each character in the collation sequence to the | |
# corresponding integer. Check for duplicates in the collation sequence. | |
my @collseq = split '', $collseq; | |
my %collseq; | |
for my $num (0 .. $#collseq) { | |
my $chr = $collseq[$num]; | |
die "duplicate character '$chr' in collation sequence" | |
if exists $collseq{$chr}; | |
$collseq{$chr} = $num; | |
} | |
for (my $i = 0 ; $i < $n ; ++$i) { | |
my $chr = substr($str, $i, 1); | |
die "input character '$chr' does not exist in collation sequence" | |
unless exists $collseq{$chr}; | |
$x = $class -> _mul($x, $base); | |
my $num = $class -> _new($collseq{$chr}); | |
$x = $class -> _add($x, $num); | |
} | |
return $x; | |
} | |
############################################################################## | |
# special modulus functions | |
sub _modinv { | |
# modular multiplicative inverse | |
my ($class, $x, $y) = @_; | |
# modulo zero | |
if ($class -> _is_zero($y)) { | |
return (undef, undef); | |
} | |
# modulo one | |
if ($class -> _is_one($y)) { | |
return ($class -> _zero(), '+'); | |
} | |
my $u = $class -> _zero(); | |
my $v = $class -> _one(); | |
my $a = $class -> _copy($y); | |
my $b = $class -> _copy($x); | |
# Euclid's Algorithm for bgcd(). | |
my $q; | |
my $sign = 1; | |
{ | |
($a, $q, $b) = ($b, $class -> _div($a, $b)); | |
last if $class -> _is_zero($b); | |
my $vq = $class -> _mul($class -> _copy($v), $q); | |
my $t = $class -> _add($vq, $u); | |
$u = $v; | |
$v = $t; | |
$sign = -$sign; | |
redo; | |
} | |
# if the gcd is not 1, there exists no modular multiplicative inverse | |
return (undef, undef) unless $class -> _is_one($a); | |
($v, $sign == 1 ? '+' : '-'); | |
} | |
sub _modpow { | |
# modulus of power ($x ** $y) % $z | |
my ($class, $num, $exp, $mod) = @_; | |
# a^b (mod 1) = 0 for all a and b | |
if ($class -> _is_one($mod)) { | |
return $class -> _zero(); | |
} | |
# 0^a (mod m) = 0 if m != 0, a != 0 | |
# 0^0 (mod m) = 1 if m != 0 | |
if ($class -> _is_zero($num)) { | |
return $class -> _is_zero($exp) ? $class -> _one() | |
: $class -> _zero(); | |
} | |
# $num = $class -> _mod($num, $mod); # this does not make it faster | |
my $acc = $class -> _copy($num); | |
my $t = $class -> _one(); | |
my $expbin = $class -> _as_bin($exp); | |
$expbin =~ s/^0b//; | |
my $len = length($expbin); | |
while (--$len >= 0) { | |
if (substr($expbin, $len, 1) eq '1') { | |
$t = $class -> _mul($t, $acc); | |
$t = $class -> _mod($t, $mod); | |
} | |
$acc = $class -> _mul($acc, $acc); | |
$acc = $class -> _mod($acc, $mod); | |
} | |
return $t; | |
} | |
sub _gcd { | |
# Greatest common divisor. | |
my ($class, $x, $y) = @_; | |
# gcd(0, 0) = 0 | |
# gcd(0, a) = a, if a != 0 | |
if ($class -> _acmp($x, $y) == 0) { | |
return $class -> _copy($x); | |
} | |
if ($class -> _is_zero($x)) { | |
if ($class -> _is_zero($y)) { | |
return $class -> _zero(); | |
} else { | |
return $class -> _copy($y); | |
} | |
} else { | |
if ($class -> _is_zero($y)) { | |
return $class -> _copy($x); | |
} else { | |
# Until $y is zero ... | |
$x = $class -> _copy($x); | |
until ($class -> _is_zero($y)) { | |
# Compute remainder. | |
$x = $class -> _mod($x, $y); | |
# Swap $x and $y. | |
my $tmp = $x; | |
$x = $class -> _copy($y); | |
$y = $tmp; | |
} | |
return $x; | |
} | |
} | |
} | |
sub _lcm { | |
# Least common multiple. | |
my ($class, $x, $y) = @_; | |
# lcm(0, x) = 0 for all x | |
return $class -> _zero() | |
if ($class -> _is_zero($x) || | |
$class -> _is_zero($y)); | |
my $gcd = $class -> _gcd($class -> _copy($x), $y); | |
$x = $class -> _div($x, $gcd); | |
$x = $class -> _mul($x, $y); | |
return $x; | |
} | |
sub _lucas { | |
my ($class, $n) = @_; | |
$n = $class -> _num($n) if ref $n; | |
# In list context, use lucas(n) = lucas(n-1) + lucas(n-2) | |
if (wantarray) { | |
my @y; | |
push @y, $class -> _two(); | |
return @y if $n == 0; | |
push @y, $class -> _one(); | |
return @y if $n == 1; | |
for (my $i = 2 ; $i <= $n ; ++ $i) { | |
$y[$i] = $class -> _add($class -> _copy($y[$i - 1]), $y[$i - 2]); | |
} | |
return @y; | |
} | |
require Scalar::Util; | |
# In scalar context use that lucas(n) = fib(n-1) + fib(n+1). | |
# | |
# Remember that _fib() behaves differently in scalar context and list | |
# context, so we must add scalar() to get the desired behaviour. | |
return $class -> _two() if $n == 0; | |
return $class -> _add(scalar $class -> _fib($n - 1), | |
scalar $class -> _fib($n + 1)); | |
} | |
sub _fib { | |
my ($class, $n) = @_; | |
$n = $class -> _num($n) if ref $n; | |
# In list context, use fib(n) = fib(n-1) + fib(n-2) | |
if (wantarray) { | |
my @y; | |
push @y, $class -> _zero(); | |
return @y if $n == 0; | |
push @y, $class -> _one(); | |
return @y if $n == 1; | |
for (my $i = 2 ; $i <= $n ; ++ $i) { | |
$y[$i] = $class -> _add($class -> _copy($y[$i - 1]), $y[$i - 2]); | |
} | |
return @y; | |
} | |
# In scalar context use a fast algorithm that is much faster than the | |
# recursive algorith used in list context. | |
my $cache = {}; | |
my $two = $class -> _two(); | |
my $fib; | |
$fib = sub { | |
my $n = shift; | |
return $class -> _zero() if $n <= 0; | |
return $class -> _one() if $n <= 2; | |
return $cache -> {$n} if exists $cache -> {$n}; | |
my $k = int($n / 2); | |
my $a = $fib -> ($k + 1); | |
my $b = $fib -> ($k); | |
my $y; | |
if ($n % 2 == 1) { | |
# a*a + b*b | |
$y = $class -> _add($class -> _mul($class -> _copy($a), $a), | |
$class -> _mul($class -> _copy($b), $b)); | |
} else { | |
# (2*a - b)*b | |
$y = $class -> _mul($class -> _sub($class -> _mul( | |
$class -> _copy($two), $a), $b), $b); | |
} | |
$cache -> {$n} = $y; | |
return $y; | |
}; | |
return $fib -> ($n); | |
} | |
############################################################################## | |
############################################################################## | |
1; | |
__END__ | |
=pod | |
=head1 NAME | |
Math::BigInt::Lib - virtual parent class for Math::BigInt libraries | |
=head1 SYNOPSIS | |
# In the backend library for Math::BigInt et al. | |
package Math::BigInt::MyBackend; | |
use Math::BigInt::lib; | |
our @ISA = qw< Math::BigInt::lib >; | |
sub _new { ... } | |
sub _str { ... } | |
sub _add { ... } | |
str _sub { ... } | |
... | |
# In your main program. | |
use Math::BigInt lib => 'MyBackend'; | |
=head1 DESCRIPTION | |
This module provides support for big integer calculations. It is not intended | |
to be used directly, but rather as a parent class for backend libraries used by | |
Math::BigInt, Math::BigFloat, Math::BigRat, and related modules. | |
Other backend libraries include Math::BigInt::Calc, Math::BigInt::FastCalc, | |
Math::BigInt::GMP, and Math::BigInt::Pari. | |
In order to allow for multiple big integer libraries, Math::BigInt was | |
rewritten to use a plug-in library for core math routines. Any module which | |
conforms to the API can be used by Math::BigInt by using this in your program: | |
use Math::BigInt lib => 'libname'; | |
'libname' is either the long name, like 'Math::BigInt::Pari', or only the short | |
version, like 'Pari'. | |
=head2 General Notes | |
A library only needs to deal with unsigned big integers. Testing of input | |
parameter validity is done by the caller, so there is no need to worry about | |
underflow (e.g., in C<_sub()> and C<_dec()>) or about division by zero (e.g., | |
in C<_div()> and C<_mod()>)) or similar cases. | |
Some libraries use methods that don't modify their argument, and some libraries | |
don't even use objects, but rather unblessed references. Because of this, | |
liberary methods are always called as class methods, not instance methods: | |
$x = Class -> method($x, $y); # like this | |
$x = $x -> method($y); # not like this ... | |
$x -> method($y); # ... or like this | |
And with boolean methods | |
$bool = Class -> method($x, $y); # like this | |
$bool = $x -> method($y); # not like this | |
Return values are always objects, strings, Perl scalars, or true/false for | |
comparison routines. | |
=head3 API version | |
=over 4 | |
=item CLASS-E<gt>api_version() | |
This method is no longer used and can be omitted. Methods that are not | |
implemented by a subclass will be inherited from this class. | |
=back | |
=head3 Constructors | |
The following methods are mandatory: _new(), _str(), _add(), and _sub(). | |
However, computations will be very slow without _mul() and _div(). | |
=over 4 | |
=item CLASS-E<gt>_new(STR) | |
Convert a string representing an unsigned decimal number to an object | |
representing the same number. The input is normalized, i.e., it matches | |
C<^(0|[1-9]\d*)$>. | |
=item CLASS-E<gt>_zero() | |
Return an object representing the number zero. | |
=item CLASS-E<gt>_one() | |
Return an object representing the number one. | |
=item CLASS-E<gt>_two() | |
Return an object representing the number two. | |
=item CLASS-E<gt>_ten() | |
Return an object representing the number ten. | |
=item CLASS-E<gt>_from_bin(STR) | |
Return an object given a string representing a binary number. The input has a | |
'0b' prefix and matches the regular expression C<^0[bB](0|1[01]*)$>. | |
=item CLASS-E<gt>_from_oct(STR) | |
Return an object given a string representing an octal number. The input has a | |
'0' prefix and matches the regular expression C<^0[1-7]*$>. | |
=item CLASS-E<gt>_from_hex(STR) | |
Return an object given a string representing a hexadecimal number. The input | |
has a '0x' prefix and matches the regular expression | |
C<^0x(0|[1-9a-fA-F][\da-fA-F]*)$>. | |
=item CLASS-E<gt>_from_bytes(STR) | |
Returns an object given a byte string representing the number. The byte string | |
is in big endian byte order, so the two-byte input string "\x01\x00" should | |
give an output value representing the number 256. | |
=item CLASS-E<gt>_from_base(STR, BASE, COLLSEQ) | |
Returns an object given a string STR, a base BASE, and a collation sequence | |
COLLSEQ. Each character in STR represents a numerical value identical to the | |
character's position in COLLSEQ. All characters in STR must be present in | |
COLLSEQ. | |
If BASE is less than or equal to 94, and a collation sequence is not specified, | |
the following default collation sequence is used. It contains of all the 94 | |
printable ASCII characters except space/blank: | |
0123456789 # ASCII 48 to 57 | |
ABCDEFGHIJKLMNOPQRSTUVWXYZ # ASCII 65 to 90 | |
abcdefghijklmnopqrstuvwxyz # ASCII 97 to 122 | |
!"#$%&'()*+,-./ # ASCII 33 to 47 | |
:;<=>?@ # ASCII 58 to 64 | |
[\]^_` # ASCII 91 to 96 | |
{|}~ # ASCII 123 to 126 | |
If the default collation sequence is used, and the BASE is less than or equal | |
to 36, the letter case in STR is ignored. | |
For instance, with base 3 and collation sequence "-/|", the character "-" | |
represents 0, "/" represents 1, and "|" represents 2. So if STR is "/|-", the | |
output is 1 * 3**2 + 2 * 3**1 + 0 * 3**0 = 15. | |
The following examples show standard binary, octal, decimal, and hexadecimal | |
conversion. All examples return 250. | |
$x = $class -> _from_base("11111010", 2) | |
$x = $class -> _from_base("372", 8) | |
$x = $class -> _from_base("250", 10) | |
$x = $class -> _from_base("FA", 16) | |
Some more examples, all returning 250: | |
$x = $class -> _from_base("100021", 3) | |
$x = $class -> _from_base("3322", 4) | |
$x = $class -> _from_base("2000", 5) | |
$x = $class -> _from_base("caaa", 5, "abcde") | |
$x = $class -> _from_base("42", 62) | |
$x = $class -> _from_base("2!", 94) | |
=back | |
=head3 Mathematical functions | |
=over 4 | |
=item CLASS-E<gt>_add(OBJ1, OBJ2) | |
Returns the result of adding OBJ2 to OBJ1. | |
=item CLASS-E<gt>_mul(OBJ1, OBJ2) | |
Returns the result of multiplying OBJ2 and OBJ1. | |
=item CLASS-E<gt>_div(OBJ1, OBJ2) | |
In scalar context, returns the quotient after dividing OBJ1 by OBJ2 and | |
truncating the result to an integer. In list context, return the quotient and | |
the remainder. | |
=item CLASS-E<gt>_sub(OBJ1, OBJ2, FLAG) | |
=item CLASS-E<gt>_sub(OBJ1, OBJ2) | |
Returns the result of subtracting OBJ2 by OBJ1. If C<flag> is false or omitted, | |
OBJ1 might be modified. If C<flag> is true, OBJ2 might be modified. | |
=item CLASS-E<gt>_dec(OBJ) | |
Returns the result after decrementing OBJ by one. | |
=item CLASS-E<gt>_inc(OBJ) | |
Returns the result after incrementing OBJ by one. | |
=item CLASS-E<gt>_mod(OBJ1, OBJ2) | |
Returns OBJ1 modulo OBJ2, i.e., the remainder after dividing OBJ1 by OBJ2. | |
=item CLASS-E<gt>_sqrt(OBJ) | |
Returns the square root of OBJ, truncated to an integer. | |
=item CLASS-E<gt>_root(OBJ, N) | |
Returns the Nth root of OBJ, truncated to an integer. | |
=item CLASS-E<gt>_fac(OBJ) | |
Returns the factorial of OBJ, i.e., the product of all positive integers up to | |
and including OBJ. | |
=item CLASS-E<gt>_dfac(OBJ) | |
Returns the double factorial of OBJ. If OBJ is an even integer, returns the | |
product of all positive, even integers up to and including OBJ, i.e., | |
2*4*6*...*OBJ. If OBJ is an odd integer, returns the product of all positive, | |
odd integers, i.e., 1*3*5*...*OBJ. | |
=item CLASS-E<gt>_pow(OBJ1, OBJ2) | |
Returns OBJ1 raised to the power of OBJ2. By convention, 0**0 = 1. | |
=item CLASS-E<gt>_modinv(OBJ1, OBJ2) | |
Returns the modular multiplicative inverse, i.e., return OBJ3 so that | |
(OBJ3 * OBJ1) % OBJ2 = 1 % OBJ2 | |
The result is returned as two arguments. If the modular multiplicative inverse | |
does not exist, both arguments are undefined. Otherwise, the arguments are a | |
number (object) and its sign ("+" or "-"). | |
The output value, with its sign, must either be a positive value in the range | |
1,2,...,OBJ2-1 or the same value subtracted OBJ2. For instance, if the input | |
arguments are objects representing the numbers 7 and 5, the method must either | |
return an object representing the number 3 and a "+" sign, since (3*7) % 5 = 1 | |
% 5, or an object representing the number 2 and a "-" sign, since (-2*7) % 5 = 1 | |
% 5. | |
=item CLASS-E<gt>_modpow(OBJ1, OBJ2, OBJ3) | |
Returns the modular exponentiation, i.e., (OBJ1 ** OBJ2) % OBJ3. | |
=item CLASS-E<gt>_rsft(OBJ, N, B) | |
Returns the result after shifting OBJ N digits to thee right in base B. This is | |
equivalent to performing integer division by B**N and discarding the remainder, | |
except that it might be much faster. | |
For instance, if the object $obj represents the hexadecimal number 0xabcde, | |
then C<_rsft($obj, 2, 16)> returns an object representing the number 0xabc. The | |
"remainer", 0xde, is discarded and not returned. | |
=item CLASS-E<gt>_lsft(OBJ, N, B) | |
Returns the result after shifting OBJ N digits to the left in base B. This is | |
equivalent to multiplying by B**N, except that it might be much faster. | |
=item CLASS-E<gt>_log_int(OBJ, B) | |
Returns the logarithm of OBJ to base BASE truncted to an integer. This method | |
has two output arguments, the OBJECT and a STATUS. The STATUS is Perl scalar; | |
it is 1 if OBJ is the exact result, 0 if the result was truncted to give OBJ, | |
and undef if it is unknown whether OBJ is the exact result. | |
=item CLASS-E<gt>_gcd(OBJ1, OBJ2) | |
Returns the greatest common divisor of OBJ1 and OBJ2. | |
=item CLASS-E<gt>_lcm(OBJ1, OBJ2) | |
Return the least common multiple of OBJ1 and OBJ2. | |
=item CLASS-E<gt>_fib(OBJ) | |
In scalar context, returns the nth Fibonacci number: _fib(0) returns 0, _fib(1) | |
returns 1, _fib(2) returns 1, _fib(3) returns 2 etc. In list context, returns | |
the Fibonacci numbers from F(0) to F(n): 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ... | |
=item CLASS-E<gt>_lucas(OBJ) | |
In scalar context, returns the nth Lucas number: _lucas(0) returns 2, _lucas(1) | |
returns 1, _lucas(2) returns 3, etc. In list context, returns the Lucas numbers | |
from L(0) to L(n): 2, 1, 3, 4, 7, 11, 18, 29,47, 76, ... | |
=back | |
=head3 Bitwise operators | |
=over 4 | |
=item CLASS-E<gt>_and(OBJ1, OBJ2) | |
Returns bitwise and. | |
=item CLASS-E<gt>_or(OBJ1, OBJ2) | |
Returns bitwise or. | |
=item CLASS-E<gt>_xor(OBJ1, OBJ2) | |
Returns bitwise exclusive or. | |
=item CLASS-E<gt>_sand(OBJ1, OBJ2, SIGN1, SIGN2) | |
Returns bitwise signed and. | |
=item CLASS-E<gt>_sor(OBJ1, OBJ2, SIGN1, SIGN2) | |
Returns bitwise signed or. | |
=item CLASS-E<gt>_sxor(OBJ1, OBJ2, SIGN1, SIGN2) | |
Returns bitwise signed exclusive or. | |
=back | |
=head3 Boolean operators | |
=over 4 | |
=item CLASS-E<gt>_is_zero(OBJ) | |
Returns a true value if OBJ is zero, and false value otherwise. | |
=item CLASS-E<gt>_is_one(OBJ) | |
Returns a true value if OBJ is one, and false value otherwise. | |
=item CLASS-E<gt>_is_two(OBJ) | |
Returns a true value if OBJ is two, and false value otherwise. | |
=item CLASS-E<gt>_is_ten(OBJ) | |
Returns a true value if OBJ is ten, and false value otherwise. | |
=item CLASS-E<gt>_is_even(OBJ) | |
Return a true value if OBJ is an even integer, and a false value otherwise. | |
=item CLASS-E<gt>_is_odd(OBJ) | |
Return a true value if OBJ is an even integer, and a false value otherwise. | |
=item CLASS-E<gt>_acmp(OBJ1, OBJ2) | |
Compare OBJ1 and OBJ2 and return -1, 0, or 1, if OBJ1 is numerically less than, | |
equal to, or larger than OBJ2, respectively. | |
=back | |
=head3 String conversion | |
=over 4 | |
=item CLASS-E<gt>_str(OBJ) | |
Returns a string representing OBJ in decimal notation. The returned string | |
should have no leading zeros, i.e., it should match C<^(0|[1-9]\d*)$>. | |
=item CLASS-E<gt>_to_bin(OBJ) | |
Returns the binary string representation of OBJ. | |
=item CLASS-E<gt>_to_oct(OBJ) | |
Returns the octal string representation of the number. | |
=item CLASS-E<gt>_to_hex(OBJ) | |
Returns the hexadecimal string representation of the number. | |
=item CLASS-E<gt>_to_bytes(OBJ) | |
Returns a byte string representation of OBJ. The byte string is in big endian | |
byte order, so if OBJ represents the number 256, the output should be the | |
two-byte string "\x01\x00". | |
=item CLASS-E<gt>_to_base(OBJ, BASE, COLLSEQ) | |
Returns a string representation of OBJ in base BASE with collation sequence | |
COLLSEQ. | |
$val = $class -> _new("210"); | |
$str = $class -> _to_base($val, 10, "xyz") # $str is "zyx" | |
$val = $class -> _new("32"); | |
$str = $class -> _to_base($val, 2, "-|") # $str is "|-----" | |
See _from_base() for more information. | |
=item CLASS-E<gt>_as_bin(OBJ) | |
Like C<_to_bin()> but with a '0b' prefix. | |
=item CLASS-E<gt>_as_oct(OBJ) | |
Like C<_to_oct()> but with a '0' prefix. | |
=item CLASS-E<gt>_as_hex(OBJ) | |
Like C<_to_hex()> but with a '0x' prefix. | |
=item CLASS-E<gt>_as_bytes(OBJ) | |
This is an alias to C<_to_bytes()>. | |
=back | |
=head3 Numeric conversion | |
=over 4 | |
=item CLASS-E<gt>_num(OBJ) | |
Returns a Perl scalar number representing the number OBJ as close as | |
possible. Since Perl scalars have limited precision, the returned value might | |
not be exactly the same as OBJ. | |
=back | |
=head3 Miscellaneous | |
=over 4 | |
=item CLASS-E<gt>_copy(OBJ) | |
Returns a true copy OBJ. | |
=item CLASS-E<gt>_len(OBJ) | |
Returns the number of the decimal digits in OBJ. The output is a Perl scalar. | |
=item CLASS-E<gt>_zeros(OBJ) | |
Returns the number of trailing decimal zeros. The output is a Perl scalar. The | |
number zero has no trailing decimal zeros. | |
=item CLASS-E<gt>_digit(OBJ, N) | |
Returns the Nth digit in OBJ as a Perl scalar. N is a Perl scalar, where zero | |
refers to the rightmost (least significant) digit, and negative values count | |
from the left (most significant digit). If $obj represents the number 123, then | |
CLASS->_digit($obj, 0) # returns 3 | |
CLASS->_digit($obj, 1) # returns 2 | |
CLASS->_digit($obj, 2) # returns 1 | |
CLASS->_digit($obj, -1) # returns 1 | |
=item CLASS-E<gt>_digitsum(OBJ) | |
Returns the sum of the base 10 digits. | |
=item CLASS-E<gt>_check(OBJ) | |
Returns true if the object is invalid and false otherwise. Preferably, the true | |
value is a string describing the problem with the object. This is a check | |
routine to test the internal state of the object for corruption. | |
=item CLASS-E<gt>_set(OBJ) | |
xxx | |
=back | |
=head2 API version 2 | |
The following methods are required for an API version of 2 or greater. | |
=head3 Constructors | |
=over 4 | |
=item CLASS-E<gt>_1ex(N) | |
Return an object representing the number 10**N where N E<gt>= 0 is a Perl | |
scalar. | |
=back | |
=head3 Mathematical functions | |
=over 4 | |
=item CLASS-E<gt>_nok(OBJ1, OBJ2) | |
Return the binomial coefficient OBJ1 over OBJ1. | |
=back | |
=head3 Miscellaneous | |
=over 4 | |
=item CLASS-E<gt>_alen(OBJ) | |
Return the approximate number of decimal digits of the object. The output is a | |
Perl scalar. | |
=back | |
=head1 WRAP YOUR OWN | |
If you want to port your own favourite C library for big numbers to the | |
Math::BigInt interface, you can take any of the already existing modules as a | |
rough guideline. You should really wrap up the latest Math::BigInt and | |
Math::BigFloat testsuites with your module, and replace in them any of the | |
following: | |
use Math::BigInt; | |
by this: | |
use Math::BigInt lib => 'yourlib'; | |
This way you ensure that your library really works 100% within Math::BigInt. | |
=head1 BUGS | |
Please report any bugs or feature requests to | |
C<bug-math-bigint at rt.cpan.org>, or through the web interface at | |
L<https://rt.cpan.org/Ticket/Create.html?Queue=Math-BigInt> | |
(requires login). | |
We will be notified, and then you'll automatically be notified of progress on | |
your bug as I make changes. | |
=head1 SUPPORT | |
You can find documentation for this module with the perldoc command. | |
perldoc Math::BigInt::Calc | |
You can also look for information at: | |
=over 4 | |
=item * RT: CPAN's request tracker | |
L<https://rt.cpan.org/Public/Dist/Display.html?Name=Math-BigInt> | |
=item * AnnoCPAN: Annotated CPAN documentation | |
L<http://annocpan.org/dist/Math-BigInt> | |
=item * CPAN Ratings | |
L<https://cpanratings.perl.org/dist/Math-BigInt> | |
=item * MetaCPAN | |
L<https://metacpan.org/release/Math-BigInt> | |
=item * CPAN Testers Matrix | |
L<http://matrix.cpantesters.org/?dist=Math-BigInt> | |
=item * The Bignum mailing list | |
=over 4 | |
=item * Post to mailing list | |
C<bignum at lists.scsys.co.uk> | |
=item * View mailing list | |
L<http://lists.scsys.co.uk/pipermail/bignum/> | |
=item * Subscribe/Unsubscribe | |
L<http://lists.scsys.co.uk/cgi-bin/mailman/listinfo/bignum> | |
=back | |
=back | |
=head1 LICENSE | |
This program is free software; you may redistribute it and/or modify it under | |
the same terms as Perl itself. | |
=head1 AUTHOR | |
Peter John Acklam, E<lt>[email protected]<gt> | |
Code and documentation based on the Math::BigInt::Calc module by Tels | |
E<lt>[email protected]<gt> | |
=head1 SEE ALSO | |
L<Math::BigInt>, L<Math::BigInt::Calc>, L<Math::BigInt::GMP>, | |
L<Math::BigInt::FastCalc> and L<Math::BigInt::Pari>. | |
=cut | |