Spaces:
Running
Running
# | |
# Complex numbers and associated mathematical functions | |
# -- Raphael Manfredi Since Sep 1996 | |
# -- Jarkko Hietaniemi Since Mar 1997 | |
# -- Daniel S. Lewart Since Sep 1997 | |
# | |
package Math::Complex; | |
{ use 5.006; } | |
use strict; | |
our $VERSION = 1.59_02; | |
use Config; | |
our ($Inf, $ExpInf); | |
our ($vax_float, $has_inf, $has_nan); | |
BEGIN { | |
$vax_float = (pack("d",1) =~ /^[\x80\x10]\x40/); | |
$has_inf = !$vax_float; | |
$has_nan = !$vax_float; | |
unless ($has_inf) { | |
# For example in vax, there is no Inf, | |
# and just mentioning the DBL_MAX (1.70141183460469229e+38) | |
# causes SIGFPE. | |
# These are pretty useless without a real infinity, | |
# but setting them makes for less warnings about their | |
# undefined values. | |
$Inf = "Inf"; | |
$ExpInf = "Inf"; | |
return; | |
} | |
my %DBL_MAX = # These are IEEE 754 maxima. | |
( | |
4 => '1.70141183460469229e+38', | |
8 => '1.7976931348623157e+308', | |
# AFAICT the 10, 12, and 16-byte long doubles | |
# all have the same maximum. | |
10 => '1.1897314953572317650857593266280070162E+4932', | |
12 => '1.1897314953572317650857593266280070162E+4932', | |
16 => '1.1897314953572317650857593266280070162E+4932', | |
); | |
my $nvsize = $Config{nvsize} || | |
($Config{uselongdouble} && $Config{longdblsize}) || | |
$Config{doublesize}; | |
die "Math::Complex: Could not figure out nvsize\n" | |
unless defined $nvsize; | |
die "Math::Complex: Cannot not figure out max nv (nvsize = $nvsize)\n" | |
unless defined $DBL_MAX{$nvsize}; | |
my $DBL_MAX = eval $DBL_MAX{$nvsize}; | |
die "Math::Complex: Could not figure out max nv (nvsize = $nvsize)\n" | |
unless defined $DBL_MAX; | |
my $BIGGER_THAN_THIS = 1e30; # Must find something bigger than this. | |
if ($^O eq 'unicosmk') { | |
$Inf = $DBL_MAX; | |
} else { | |
local $SIG{FPE} = sub { }; | |
local $!; | |
# We do want an arithmetic overflow, Inf INF inf Infinity. | |
for my $t ( | |
'exp(99999)', # Enough even with 128-bit long doubles. | |
'inf', | |
'Inf', | |
'INF', | |
'infinity', | |
'Infinity', | |
'INFINITY', | |
'1e99999', | |
) { | |
local $^W = 0; | |
my $i = eval "$t+1.0"; | |
if (defined $i && $i > $BIGGER_THAN_THIS) { | |
$Inf = $i; | |
last; | |
} | |
} | |
$Inf = $DBL_MAX unless defined $Inf; # Oh well, close enough. | |
die "Math::Complex: Could not get Infinity" | |
unless $Inf > $BIGGER_THAN_THIS; | |
$ExpInf = eval 'exp(99999)'; | |
} | |
# print "# On this machine, Inf = '$Inf'\n"; | |
} | |
use Scalar::Util qw(set_prototype); | |
use warnings; | |
no warnings 'syntax'; # To avoid the (_) warnings. | |
BEGIN { | |
# For certain functions that we override, in 5.10 or better | |
# we can set a smarter prototype that will handle the lexical $_ | |
# (also a 5.10+ feature). | |
if ($] >= 5.010000) { | |
set_prototype \&abs, '_'; | |
set_prototype \&cos, '_'; | |
set_prototype \&exp, '_'; | |
set_prototype \&log, '_'; | |
set_prototype \&sin, '_'; | |
set_prototype \&sqrt, '_'; | |
} | |
} | |
my $i; | |
my %LOGN; | |
# Regular expression for floating point numbers. | |
# These days we could use Scalar::Util::lln(), I guess. | |
my $gre = qr'\s*([\+\-]?(?:(?:(?:\d+(?:_\d+)*(?:\.\d*(?:_\d+)*)?|\.\d+(?:_\d+)*)(?:[eE][\+\-]?\d+(?:_\d+)*)?))|inf)'i; | |
require Exporter; | |
our @ISA = qw(Exporter); | |
my @trig = qw( | |
pi | |
tan | |
csc cosec sec cot cotan | |
asin acos atan | |
acsc acosec asec acot acotan | |
sinh cosh tanh | |
csch cosech sech coth cotanh | |
asinh acosh atanh | |
acsch acosech asech acoth acotanh | |
); | |
our @EXPORT = (qw( | |
i Re Im rho theta arg | |
sqrt log ln | |
log10 logn cbrt root | |
cplx cplxe | |
atan2 | |
), | |
@trig); | |
my @pi = qw(pi pi2 pi4 pip2 pip4 Inf); | |
our @EXPORT_OK = @pi; | |
our %EXPORT_TAGS = ( | |
'trig' => [@trig], | |
'pi' => [@pi], | |
); | |
use overload | |
'=' => \&_copy, | |
'+=' => \&_plus, | |
'+' => \&_plus, | |
'-=' => \&_minus, | |
'-' => \&_minus, | |
'*=' => \&_multiply, | |
'*' => \&_multiply, | |
'/=' => \&_divide, | |
'/' => \&_divide, | |
'**=' => \&_power, | |
'**' => \&_power, | |
'==' => \&_numeq, | |
'<=>' => \&_spaceship, | |
'neg' => \&_negate, | |
'~' => \&_conjugate, | |
'abs' => \&abs, | |
'sqrt' => \&sqrt, | |
'exp' => \&exp, | |
'log' => \&log, | |
'sin' => \&sin, | |
'cos' => \&cos, | |
'atan2' => \&atan2, | |
'""' => \&_stringify; | |
# | |
# Package "privates" | |
# | |
my %DISPLAY_FORMAT = ('style' => 'cartesian', | |
'polar_pretty_print' => 1); | |
my $eps = 1e-14; # Epsilon | |
# | |
# Object attributes (internal): | |
# cartesian [real, imaginary] -- cartesian form | |
# polar [rho, theta] -- polar form | |
# c_dirty cartesian form not up-to-date | |
# p_dirty polar form not up-to-date | |
# display display format (package's global when not set) | |
# | |
# Die on bad *make() arguments. | |
sub _cannot_make { | |
die "@{[(caller(1))[3]]}: Cannot take $_[0] of '$_[1]'.\n"; | |
} | |
sub _make { | |
my $arg = shift; | |
my ($p, $q); | |
if ($arg =~ /^$gre$/) { | |
($p, $q) = ($1, 0); | |
} elsif ($arg =~ /^(?:$gre)?$gre\s*i\s*$/) { | |
($p, $q) = ($1 || 0, $2); | |
} elsif ($arg =~ /^\s*\(\s*$gre\s*(?:,\s*$gre\s*)?\)\s*$/) { | |
($p, $q) = ($1, $2 || 0); | |
} | |
if (defined $p) { | |
$p =~ s/^\+//; | |
$p =~ s/^(-?)inf$/"${1}9**9**9"/e if $has_inf; | |
$q =~ s/^\+//; | |
$q =~ s/^(-?)inf$/"${1}9**9**9"/e if $has_inf; | |
} | |
return ($p, $q); | |
} | |
sub _emake { | |
my $arg = shift; | |
my ($p, $q); | |
if ($arg =~ /^\s*\[\s*$gre\s*(?:,\s*$gre\s*)?\]\s*$/) { | |
($p, $q) = ($1, $2 || 0); | |
} elsif ($arg =~ m!^\s*\[\s*$gre\s*(?:,\s*([-+]?\d*\s*)?pi(?:/\s*(\d+))?\s*)?\]\s*$!) { | |
($p, $q) = ($1, ($2 eq '-' ? -1 : ($2 || 1)) * pi() / ($3 || 1)); | |
} elsif ($arg =~ /^\s*\[\s*$gre\s*\]\s*$/) { | |
($p, $q) = ($1, 0); | |
} elsif ($arg =~ /^\s*$gre\s*$/) { | |
($p, $q) = ($1, 0); | |
} | |
if (defined $p) { | |
$p =~ s/^\+//; | |
$q =~ s/^\+//; | |
$p =~ s/^(-?)inf$/"${1}9**9**9"/e if $has_inf; | |
$q =~ s/^(-?)inf$/"${1}9**9**9"/e if $has_inf; | |
} | |
return ($p, $q); | |
} | |
sub _copy { | |
my $self = shift; | |
my $clone = {%$self}; | |
if ($self->{'cartesian'}) { | |
$clone->{'cartesian'} = [@{$self->{'cartesian'}}]; | |
} | |
if ($self->{'polar'}) { | |
$clone->{'polar'} = [@{$self->{'polar'}}]; | |
} | |
bless $clone,__PACKAGE__; | |
return $clone; | |
} | |
# | |
# ->make | |
# | |
# Create a new complex number (cartesian form) | |
# | |
sub make { | |
my $self = bless {}, shift; | |
my ($re, $im); | |
if (@_ == 0) { | |
($re, $im) = (0, 0); | |
} elsif (@_ == 1) { | |
return (ref $self)->emake($_[0]) | |
if ($_[0] =~ /^\s*\[/); | |
($re, $im) = _make($_[0]); | |
} elsif (@_ == 2) { | |
($re, $im) = @_; | |
} | |
if (defined $re) { | |
_cannot_make("real part", $re) unless $re =~ /^$gre$/; | |
} | |
$im ||= 0; | |
_cannot_make("imaginary part", $im) unless $im =~ /^$gre$/; | |
$self->_set_cartesian([$re, $im ]); | |
$self->display_format('cartesian'); | |
return $self; | |
} | |
# | |
# ->emake | |
# | |
# Create a new complex number (exponential form) | |
# | |
sub emake { | |
my $self = bless {}, shift; | |
my ($rho, $theta); | |
if (@_ == 0) { | |
($rho, $theta) = (0, 0); | |
} elsif (@_ == 1) { | |
return (ref $self)->make($_[0]) | |
if ($_[0] =~ /^\s*\(/ || $_[0] =~ /i\s*$/); | |
($rho, $theta) = _emake($_[0]); | |
} elsif (@_ == 2) { | |
($rho, $theta) = @_; | |
} | |
if (defined $rho && defined $theta) { | |
if ($rho < 0) { | |
$rho = -$rho; | |
$theta = ($theta <= 0) ? $theta + pi() : $theta - pi(); | |
} | |
} | |
if (defined $rho) { | |
_cannot_make("rho", $rho) unless $rho =~ /^$gre$/; | |
} | |
$theta ||= 0; | |
_cannot_make("theta", $theta) unless $theta =~ /^$gre$/; | |
$self->_set_polar([$rho, $theta]); | |
$self->display_format('polar'); | |
return $self; | |
} | |
sub new { &make } # For backward compatibility only. | |
# | |
# cplx | |
# | |
# Creates a complex number from a (re, im) tuple. | |
# This avoids the burden of writing Math::Complex->make(re, im). | |
# | |
sub cplx { | |
return __PACKAGE__->make(@_); | |
} | |
# | |
# cplxe | |
# | |
# Creates a complex number from a (rho, theta) tuple. | |
# This avoids the burden of writing Math::Complex->emake(rho, theta). | |
# | |
sub cplxe { | |
return __PACKAGE__->emake(@_); | |
} | |
# | |
# pi | |
# | |
# The number defined as pi = 180 degrees | |
# | |
sub pi () { 4 * CORE::atan2(1, 1) } | |
# | |
# pi2 | |
# | |
# The full circle | |
# | |
sub pi2 () { 2 * pi } | |
# | |
# pi4 | |
# | |
# The full circle twice. | |
# | |
sub pi4 () { 4 * pi } | |
# | |
# pip2 | |
# | |
# The quarter circle | |
# | |
sub pip2 () { pi / 2 } | |
# | |
# pip4 | |
# | |
# The eighth circle. | |
# | |
sub pip4 () { pi / 4 } | |
# | |
# _uplog10 | |
# | |
# Used in log10(). | |
# | |
sub _uplog10 () { 1 / CORE::log(10) } | |
# | |
# i | |
# | |
# The number defined as i*i = -1; | |
# | |
sub i () { | |
return $i if ($i); | |
$i = bless {}; | |
$i->{'cartesian'} = [0, 1]; | |
$i->{'polar'} = [1, pip2]; | |
$i->{c_dirty} = 0; | |
$i->{p_dirty} = 0; | |
return $i; | |
} | |
# | |
# _ip2 | |
# | |
# Half of i. | |
# | |
sub _ip2 () { i / 2 } | |
# | |
# Attribute access/set routines | |
# | |
sub _cartesian {$_[0]->{c_dirty} ? | |
$_[0]->_update_cartesian : $_[0]->{'cartesian'}} | |
sub _polar {$_[0]->{p_dirty} ? | |
$_[0]->_update_polar : $_[0]->{'polar'}} | |
sub _set_cartesian { $_[0]->{p_dirty}++; $_[0]->{c_dirty} = 0; | |
$_[0]->{'cartesian'} = $_[1] } | |
sub _set_polar { $_[0]->{c_dirty}++; $_[0]->{p_dirty} = 0; | |
$_[0]->{'polar'} = $_[1] } | |
# | |
# ->_update_cartesian | |
# | |
# Recompute and return the cartesian form, given accurate polar form. | |
# | |
sub _update_cartesian { | |
my $self = shift; | |
my ($r, $t) = @{$self->{'polar'}}; | |
$self->{c_dirty} = 0; | |
return $self->{'cartesian'} = [$r * CORE::cos($t), $r * CORE::sin($t)]; | |
} | |
# | |
# | |
# ->_update_polar | |
# | |
# Recompute and return the polar form, given accurate cartesian form. | |
# | |
sub _update_polar { | |
my $self = shift; | |
my ($x, $y) = @{$self->{'cartesian'}}; | |
$self->{p_dirty} = 0; | |
return $self->{'polar'} = [0, 0] if $x == 0 && $y == 0; | |
return $self->{'polar'} = [CORE::sqrt($x*$x + $y*$y), | |
CORE::atan2($y, $x)]; | |
} | |
# | |
# (_plus) | |
# | |
# Computes z1+z2. | |
# | |
sub _plus { | |
my ($z1, $z2, $regular) = @_; | |
my ($re1, $im1) = @{$z1->_cartesian}; | |
$z2 = cplx($z2) unless ref $z2; | |
my ($re2, $im2) = ref $z2 ? @{$z2->_cartesian} : ($z2, 0); | |
unless (defined $regular) { | |
$z1->_set_cartesian([$re1 + $re2, $im1 + $im2]); | |
return $z1; | |
} | |
return (ref $z1)->make($re1 + $re2, $im1 + $im2); | |
} | |
# | |
# (_minus) | |
# | |
# Computes z1-z2. | |
# | |
sub _minus { | |
my ($z1, $z2, $inverted) = @_; | |
my ($re1, $im1) = @{$z1->_cartesian}; | |
$z2 = cplx($z2) unless ref $z2; | |
my ($re2, $im2) = @{$z2->_cartesian}; | |
unless (defined $inverted) { | |
$z1->_set_cartesian([$re1 - $re2, $im1 - $im2]); | |
return $z1; | |
} | |
return $inverted ? | |
(ref $z1)->make($re2 - $re1, $im2 - $im1) : | |
(ref $z1)->make($re1 - $re2, $im1 - $im2); | |
} | |
# | |
# (_multiply) | |
# | |
# Computes z1*z2. | |
# | |
sub _multiply { | |
my ($z1, $z2, $regular) = @_; | |
if ($z1->{p_dirty} == 0 and ref $z2 and $z2->{p_dirty} == 0) { | |
# if both polar better use polar to avoid rounding errors | |
my ($r1, $t1) = @{$z1->_polar}; | |
my ($r2, $t2) = @{$z2->_polar}; | |
my $t = $t1 + $t2; | |
if ($t > pi()) { $t -= pi2 } | |
elsif ($t <= -pi()) { $t += pi2 } | |
unless (defined $regular) { | |
$z1->_set_polar([$r1 * $r2, $t]); | |
return $z1; | |
} | |
return (ref $z1)->emake($r1 * $r2, $t); | |
} else { | |
my ($x1, $y1) = @{$z1->_cartesian}; | |
if (ref $z2) { | |
my ($x2, $y2) = @{$z2->_cartesian}; | |
return (ref $z1)->make($x1*$x2-$y1*$y2, $x1*$y2+$y1*$x2); | |
} else { | |
return (ref $z1)->make($x1*$z2, $y1*$z2); | |
} | |
} | |
} | |
# | |
# _divbyzero | |
# | |
# Die on division by zero. | |
# | |
sub _divbyzero { | |
my $mess = "$_[0]: Division by zero.\n"; | |
if (defined $_[1]) { | |
$mess .= "(Because in the definition of $_[0], the divisor "; | |
$mess .= "$_[1] " unless ("$_[1]" eq '0'); | |
$mess .= "is 0)\n"; | |
} | |
my @up = caller(1); | |
$mess .= "Died at $up[1] line $up[2].\n"; | |
die $mess; | |
} | |
# | |
# (_divide) | |
# | |
# Computes z1/z2. | |
# | |
sub _divide { | |
my ($z1, $z2, $inverted) = @_; | |
if ($z1->{p_dirty} == 0 and ref $z2 and $z2->{p_dirty} == 0) { | |
# if both polar better use polar to avoid rounding errors | |
my ($r1, $t1) = @{$z1->_polar}; | |
my ($r2, $t2) = @{$z2->_polar}; | |
my $t; | |
if ($inverted) { | |
_divbyzero "$z2/0" if ($r1 == 0); | |
$t = $t2 - $t1; | |
if ($t > pi()) { $t -= pi2 } | |
elsif ($t <= -pi()) { $t += pi2 } | |
return (ref $z1)->emake($r2 / $r1, $t); | |
} else { | |
_divbyzero "$z1/0" if ($r2 == 0); | |
$t = $t1 - $t2; | |
if ($t > pi()) { $t -= pi2 } | |
elsif ($t <= -pi()) { $t += pi2 } | |
return (ref $z1)->emake($r1 / $r2, $t); | |
} | |
} else { | |
my ($d, $x2, $y2); | |
if ($inverted) { | |
($x2, $y2) = @{$z1->_cartesian}; | |
$d = $x2*$x2 + $y2*$y2; | |
_divbyzero "$z2/0" if $d == 0; | |
return (ref $z1)->make(($x2*$z2)/$d, -($y2*$z2)/$d); | |
} else { | |
my ($x1, $y1) = @{$z1->_cartesian}; | |
if (ref $z2) { | |
($x2, $y2) = @{$z2->_cartesian}; | |
$d = $x2*$x2 + $y2*$y2; | |
_divbyzero "$z1/0" if $d == 0; | |
my $u = ($x1*$x2 + $y1*$y2)/$d; | |
my $v = ($y1*$x2 - $x1*$y2)/$d; | |
return (ref $z1)->make($u, $v); | |
} else { | |
_divbyzero "$z1/0" if $z2 == 0; | |
return (ref $z1)->make($x1/$z2, $y1/$z2); | |
} | |
} | |
} | |
} | |
# | |
# (_power) | |
# | |
# Computes z1**z2 = exp(z2 * log z1)). | |
# | |
sub _power { | |
my ($z1, $z2, $inverted) = @_; | |
if ($inverted) { | |
return 1 if $z1 == 0 || $z2 == 1; | |
return 0 if $z2 == 0 && Re($z1) > 0; | |
} else { | |
return 1 if $z2 == 0 || $z1 == 1; | |
return 0 if $z1 == 0 && Re($z2) > 0; | |
} | |
my $w = $inverted ? &exp($z1 * &log($z2)) | |
: &exp($z2 * &log($z1)); | |
# If both arguments cartesian, return cartesian, else polar. | |
return $z1->{c_dirty} == 0 && | |
(not ref $z2 or $z2->{c_dirty} == 0) ? | |
cplx(@{$w->_cartesian}) : $w; | |
} | |
# | |
# (_spaceship) | |
# | |
# Computes z1 <=> z2. | |
# Sorts on the real part first, then on the imaginary part. Thus 2-4i < 3+8i. | |
# | |
sub _spaceship { | |
my ($z1, $z2, $inverted) = @_; | |
my ($re1, $im1) = ref $z1 ? @{$z1->_cartesian} : ($z1, 0); | |
my ($re2, $im2) = ref $z2 ? @{$z2->_cartesian} : ($z2, 0); | |
my $sgn = $inverted ? -1 : 1; | |
return $sgn * ($re1 <=> $re2) if $re1 != $re2; | |
return $sgn * ($im1 <=> $im2); | |
} | |
# | |
# (_numeq) | |
# | |
# Computes z1 == z2. | |
# | |
# (Required in addition to _spaceship() because of NaNs.) | |
sub _numeq { | |
my ($z1, $z2, $inverted) = @_; | |
my ($re1, $im1) = ref $z1 ? @{$z1->_cartesian} : ($z1, 0); | |
my ($re2, $im2) = ref $z2 ? @{$z2->_cartesian} : ($z2, 0); | |
return $re1 == $re2 && $im1 == $im2 ? 1 : 0; | |
} | |
# | |
# (_negate) | |
# | |
# Computes -z. | |
# | |
sub _negate { | |
my ($z) = @_; | |
if ($z->{c_dirty}) { | |
my ($r, $t) = @{$z->_polar}; | |
$t = ($t <= 0) ? $t + pi : $t - pi; | |
return (ref $z)->emake($r, $t); | |
} | |
my ($re, $im) = @{$z->_cartesian}; | |
return (ref $z)->make(-$re, -$im); | |
} | |
# | |
# (_conjugate) | |
# | |
# Compute complex's _conjugate. | |
# | |
sub _conjugate { | |
my ($z) = @_; | |
if ($z->{c_dirty}) { | |
my ($r, $t) = @{$z->_polar}; | |
return (ref $z)->emake($r, -$t); | |
} | |
my ($re, $im) = @{$z->_cartesian}; | |
return (ref $z)->make($re, -$im); | |
} | |
# | |
# (abs) | |
# | |
# Compute or set complex's norm (rho). | |
# | |
sub abs { | |
my ($z, $rho) = @_ ? @_ : $_; | |
unless (ref $z) { | |
if (@_ == 2) { | |
$_[0] = $_[1]; | |
} else { | |
return CORE::abs($z); | |
} | |
} | |
if (defined $rho) { | |
$z->{'polar'} = [ $rho, ${$z->_polar}[1] ]; | |
$z->{p_dirty} = 0; | |
$z->{c_dirty} = 1; | |
return $rho; | |
} else { | |
return ${$z->_polar}[0]; | |
} | |
} | |
sub _theta { | |
my $theta = $_[0]; | |
if ($$theta > pi()) { $$theta -= pi2 } | |
elsif ($$theta <= -pi()) { $$theta += pi2 } | |
} | |
# | |
# arg | |
# | |
# Compute or set complex's argument (theta). | |
# | |
sub arg { | |
my ($z, $theta) = @_; | |
return $z unless ref $z; | |
if (defined $theta) { | |
_theta(\$theta); | |
$z->{'polar'} = [ ${$z->_polar}[0], $theta ]; | |
$z->{p_dirty} = 0; | |
$z->{c_dirty} = 1; | |
} else { | |
$theta = ${$z->_polar}[1]; | |
_theta(\$theta); | |
} | |
return $theta; | |
} | |
# | |
# (sqrt) | |
# | |
# Compute sqrt(z). | |
# | |
# It is quite tempting to use wantarray here so that in list context | |
# sqrt() would return the two solutions. This, however, would | |
# break things like | |
# | |
# print "sqrt(z) = ", sqrt($z), "\n"; | |
# | |
# The two values would be printed side by side without no intervening | |
# whitespace, quite confusing. | |
# Therefore if you want the two solutions use the root(). | |
# | |
sub sqrt { | |
my ($z) = @_ ? $_[0] : $_; | |
my ($re, $im) = ref $z ? @{$z->_cartesian} : ($z, 0); | |
return $re < 0 ? cplx(0, CORE::sqrt(-$re)) : CORE::sqrt($re) | |
if $im == 0; | |
my ($r, $t) = @{$z->_polar}; | |
return (ref $z)->emake(CORE::sqrt($r), $t/2); | |
} | |
# | |
# cbrt | |
# | |
# Compute cbrt(z) (cubic root). | |
# | |
# Why are we not returning three values? The same answer as for sqrt(). | |
# | |
sub cbrt { | |
my ($z) = @_; | |
return $z < 0 ? | |
-CORE::exp(CORE::log(-$z)/3) : | |
($z > 0 ? CORE::exp(CORE::log($z)/3): 0) | |
unless ref $z; | |
my ($r, $t) = @{$z->_polar}; | |
return 0 if $r == 0; | |
return (ref $z)->emake(CORE::exp(CORE::log($r)/3), $t/3); | |
} | |
# | |
# _rootbad | |
# | |
# Die on bad root. | |
# | |
sub _rootbad { | |
my $mess = "Root '$_[0]' illegal, root rank must be positive integer.\n"; | |
my @up = caller(1); | |
$mess .= "Died at $up[1] line $up[2].\n"; | |
die $mess; | |
} | |
# | |
# root | |
# | |
# Computes all nth root for z, returning an array whose size is n. | |
# `n' must be a positive integer. | |
# | |
# The roots are given by (for k = 0..n-1): | |
# | |
# z^(1/n) = r^(1/n) (cos ((t+2 k pi)/n) + i sin ((t+2 k pi)/n)) | |
# | |
sub root { | |
my ($z, $n, $k) = @_; | |
_rootbad($n) if ($n < 1 or int($n) != $n); | |
my ($r, $t) = ref $z ? | |
@{$z->_polar} : (CORE::abs($z), $z >= 0 ? 0 : pi); | |
my $theta_inc = pi2 / $n; | |
my $rho = $r ** (1/$n); | |
my $cartesian = ref $z && $z->{c_dirty} == 0; | |
if (@_ == 2) { | |
my @root; | |
for (my $i = 0, my $theta = $t / $n; | |
$i < $n; | |
$i++, $theta += $theta_inc) { | |
my $w = cplxe($rho, $theta); | |
# Yes, $cartesian is loop invariant. | |
push @root, $cartesian ? cplx(@{$w->_cartesian}) : $w; | |
} | |
return @root; | |
} elsif (@_ == 3) { | |
my $w = cplxe($rho, $t / $n + $k * $theta_inc); | |
return $cartesian ? cplx(@{$w->_cartesian}) : $w; | |
} | |
} | |
# | |
# Re | |
# | |
# Return or set Re(z). | |
# | |
sub Re { | |
my ($z, $Re) = @_; | |
return $z unless ref $z; | |
if (defined $Re) { | |
$z->{'cartesian'} = [ $Re, ${$z->_cartesian}[1] ]; | |
$z->{c_dirty} = 0; | |
$z->{p_dirty} = 1; | |
} else { | |
return ${$z->_cartesian}[0]; | |
} | |
} | |
# | |
# Im | |
# | |
# Return or set Im(z). | |
# | |
sub Im { | |
my ($z, $Im) = @_; | |
return 0 unless ref $z; | |
if (defined $Im) { | |
$z->{'cartesian'} = [ ${$z->_cartesian}[0], $Im ]; | |
$z->{c_dirty} = 0; | |
$z->{p_dirty} = 1; | |
} else { | |
return ${$z->_cartesian}[1]; | |
} | |
} | |
# | |
# rho | |
# | |
# Return or set rho(w). | |
# | |
sub rho { | |
Math::Complex::abs(@_); | |
} | |
# | |
# theta | |
# | |
# Return or set theta(w). | |
# | |
sub theta { | |
Math::Complex::arg(@_); | |
} | |
# | |
# (exp) | |
# | |
# Computes exp(z). | |
# | |
sub exp { | |
my ($z) = @_ ? @_ : $_; | |
return CORE::exp($z) unless ref $z; | |
my ($x, $y) = @{$z->_cartesian}; | |
return (ref $z)->emake(CORE::exp($x), $y); | |
} | |
# | |
# _logofzero | |
# | |
# Die on logarithm of zero. | |
# | |
sub _logofzero { | |
my $mess = "$_[0]: Logarithm of zero.\n"; | |
if (defined $_[1]) { | |
$mess .= "(Because in the definition of $_[0], the argument "; | |
$mess .= "$_[1] " unless ($_[1] eq '0'); | |
$mess .= "is 0)\n"; | |
} | |
my @up = caller(1); | |
$mess .= "Died at $up[1] line $up[2].\n"; | |
die $mess; | |
} | |
# | |
# (log) | |
# | |
# Compute log(z). | |
# | |
sub log { | |
my ($z) = @_ ? @_ : $_; | |
unless (ref $z) { | |
_logofzero("log") if $z == 0; | |
return $z > 0 ? CORE::log($z) : cplx(CORE::log(-$z), pi); | |
} | |
my ($r, $t) = @{$z->_polar}; | |
_logofzero("log") if $r == 0; | |
if ($t > pi()) { $t -= pi2 } | |
elsif ($t <= -pi()) { $t += pi2 } | |
return (ref $z)->make(CORE::log($r), $t); | |
} | |
# | |
# ln | |
# | |
# Alias for log(). | |
# | |
sub ln { Math::Complex::log(@_) } | |
# | |
# log10 | |
# | |
# Compute log10(z). | |
# | |
sub log10 { | |
return Math::Complex::log($_[0]) * _uplog10; | |
} | |
# | |
# logn | |
# | |
# Compute logn(z,n) = log(z) / log(n) | |
# | |
sub logn { | |
my ($z, $n) = @_; | |
$z = cplx($z, 0) unless ref $z; | |
my $logn = $LOGN{$n}; | |
$logn = $LOGN{$n} = CORE::log($n) unless defined $logn; # Cache log(n) | |
return &log($z) / $logn; | |
} | |
# | |
# (cos) | |
# | |
# Compute cos(z) = (exp(iz) + exp(-iz))/2. | |
# | |
sub cos { | |
my ($z) = @_ ? @_ : $_; | |
return CORE::cos($z) unless ref $z; | |
my ($x, $y) = @{$z->_cartesian}; | |
my $ey = CORE::exp($y); | |
my $sx = CORE::sin($x); | |
my $cx = CORE::cos($x); | |
my $ey_1 = $ey ? 1 / $ey : Inf(); | |
return (ref $z)->make($cx * ($ey + $ey_1)/2, | |
$sx * ($ey_1 - $ey)/2); | |
} | |
# | |
# (sin) | |
# | |
# Compute sin(z) = (exp(iz) - exp(-iz))/2. | |
# | |
sub sin { | |
my ($z) = @_ ? @_ : $_; | |
return CORE::sin($z) unless ref $z; | |
my ($x, $y) = @{$z->_cartesian}; | |
my $ey = CORE::exp($y); | |
my $sx = CORE::sin($x); | |
my $cx = CORE::cos($x); | |
my $ey_1 = $ey ? 1 / $ey : Inf(); | |
return (ref $z)->make($sx * ($ey + $ey_1)/2, | |
$cx * ($ey - $ey_1)/2); | |
} | |
# | |
# tan | |
# | |
# Compute tan(z) = sin(z) / cos(z). | |
# | |
sub tan { | |
my ($z) = @_; | |
my $cz = &cos($z); | |
_divbyzero "tan($z)", "cos($z)" if $cz == 0; | |
return &sin($z) / $cz; | |
} | |
# | |
# sec | |
# | |
# Computes the secant sec(z) = 1 / cos(z). | |
# | |
sub sec { | |
my ($z) = @_; | |
my $cz = &cos($z); | |
_divbyzero "sec($z)", "cos($z)" if ($cz == 0); | |
return 1 / $cz; | |
} | |
# | |
# csc | |
# | |
# Computes the cosecant csc(z) = 1 / sin(z). | |
# | |
sub csc { | |
my ($z) = @_; | |
my $sz = &sin($z); | |
_divbyzero "csc($z)", "sin($z)" if ($sz == 0); | |
return 1 / $sz; | |
} | |
# | |
# cosec | |
# | |
# Alias for csc(). | |
# | |
sub cosec { Math::Complex::csc(@_) } | |
# | |
# cot | |
# | |
# Computes cot(z) = cos(z) / sin(z). | |
# | |
sub cot { | |
my ($z) = @_; | |
my $sz = &sin($z); | |
_divbyzero "cot($z)", "sin($z)" if ($sz == 0); | |
return &cos($z) / $sz; | |
} | |
# | |
# cotan | |
# | |
# Alias for cot(). | |
# | |
sub cotan { Math::Complex::cot(@_) } | |
# | |
# acos | |
# | |
# Computes the arc cosine acos(z) = -i log(z + sqrt(z*z-1)). | |
# | |
sub acos { | |
my $z = $_[0]; | |
return CORE::atan2(CORE::sqrt(1-$z*$z), $z) | |
if (! ref $z) && CORE::abs($z) <= 1; | |
$z = cplx($z, 0) unless ref $z; | |
my ($x, $y) = @{$z->_cartesian}; | |
return 0 if $x == 1 && $y == 0; | |
my $t1 = CORE::sqrt(($x+1)*($x+1) + $y*$y); | |
my $t2 = CORE::sqrt(($x-1)*($x-1) + $y*$y); | |
my $alpha = ($t1 + $t2)/2; | |
my $beta = ($t1 - $t2)/2; | |
$alpha = 1 if $alpha < 1; | |
if ($beta > 1) { $beta = 1 } | |
elsif ($beta < -1) { $beta = -1 } | |
my $u = CORE::atan2(CORE::sqrt(1-$beta*$beta), $beta); | |
my $v = CORE::log($alpha + CORE::sqrt($alpha*$alpha-1)); | |
$v = -$v if $y > 0 || ($y == 0 && $x < -1); | |
return (ref $z)->make($u, $v); | |
} | |
# | |
# asin | |
# | |
# Computes the arc sine asin(z) = -i log(iz + sqrt(1-z*z)). | |
# | |
sub asin { | |
my $z = $_[0]; | |
return CORE::atan2($z, CORE::sqrt(1-$z*$z)) | |
if (! ref $z) && CORE::abs($z) <= 1; | |
$z = cplx($z, 0) unless ref $z; | |
my ($x, $y) = @{$z->_cartesian}; | |
return 0 if $x == 0 && $y == 0; | |
my $t1 = CORE::sqrt(($x+1)*($x+1) + $y*$y); | |
my $t2 = CORE::sqrt(($x-1)*($x-1) + $y*$y); | |
my $alpha = ($t1 + $t2)/2; | |
my $beta = ($t1 - $t2)/2; | |
$alpha = 1 if $alpha < 1; | |
if ($beta > 1) { $beta = 1 } | |
elsif ($beta < -1) { $beta = -1 } | |
my $u = CORE::atan2($beta, CORE::sqrt(1-$beta*$beta)); | |
my $v = -CORE::log($alpha + CORE::sqrt($alpha*$alpha-1)); | |
$v = -$v if $y > 0 || ($y == 0 && $x < -1); | |
return (ref $z)->make($u, $v); | |
} | |
# | |
# atan | |
# | |
# Computes the arc tangent atan(z) = i/2 log((i+z) / (i-z)). | |
# | |
sub atan { | |
my ($z) = @_; | |
return CORE::atan2($z, 1) unless ref $z; | |
my ($x, $y) = ref $z ? @{$z->_cartesian} : ($z, 0); | |
return 0 if $x == 0 && $y == 0; | |
_divbyzero "atan(i)" if ( $z == i); | |
_logofzero "atan(-i)" if (-$z == i); # -i is a bad file test... | |
my $log = &log((i + $z) / (i - $z)); | |
return _ip2 * $log; | |
} | |
# | |
# asec | |
# | |
# Computes the arc secant asec(z) = acos(1 / z). | |
# | |
sub asec { | |
my ($z) = @_; | |
_divbyzero "asec($z)", $z if ($z == 0); | |
return acos(1 / $z); | |
} | |
# | |
# acsc | |
# | |
# Computes the arc cosecant acsc(z) = asin(1 / z). | |
# | |
sub acsc { | |
my ($z) = @_; | |
_divbyzero "acsc($z)", $z if ($z == 0); | |
return asin(1 / $z); | |
} | |
# | |
# acosec | |
# | |
# Alias for acsc(). | |
# | |
sub acosec { Math::Complex::acsc(@_) } | |
# | |
# acot | |
# | |
# Computes the arc cotangent acot(z) = atan(1 / z) | |
# | |
sub acot { | |
my ($z) = @_; | |
_divbyzero "acot(0)" if $z == 0; | |
return ($z >= 0) ? CORE::atan2(1, $z) : CORE::atan2(-1, -$z) | |
unless ref $z; | |
_divbyzero "acot(i)" if ($z - i == 0); | |
_logofzero "acot(-i)" if ($z + i == 0); | |
return atan(1 / $z); | |
} | |
# | |
# acotan | |
# | |
# Alias for acot(). | |
# | |
sub acotan { Math::Complex::acot(@_) } | |
# | |
# cosh | |
# | |
# Computes the hyperbolic cosine cosh(z) = (exp(z) + exp(-z))/2. | |
# | |
sub cosh { | |
my ($z) = @_; | |
my $ex; | |
unless (ref $z) { | |
$ex = CORE::exp($z); | |
return $ex ? ($ex == $ExpInf ? Inf() : ($ex + 1/$ex)/2) : Inf(); | |
} | |
my ($x, $y) = @{$z->_cartesian}; | |
$ex = CORE::exp($x); | |
my $ex_1 = $ex ? 1 / $ex : Inf(); | |
return (ref $z)->make(CORE::cos($y) * ($ex + $ex_1)/2, | |
CORE::sin($y) * ($ex - $ex_1)/2); | |
} | |
# | |
# sinh | |
# | |
# Computes the hyperbolic sine sinh(z) = (exp(z) - exp(-z))/2. | |
# | |
sub sinh { | |
my ($z) = @_; | |
my $ex; | |
unless (ref $z) { | |
return 0 if $z == 0; | |
$ex = CORE::exp($z); | |
return $ex ? ($ex == $ExpInf ? Inf() : ($ex - 1/$ex)/2) : -Inf(); | |
} | |
my ($x, $y) = @{$z->_cartesian}; | |
my $cy = CORE::cos($y); | |
my $sy = CORE::sin($y); | |
$ex = CORE::exp($x); | |
my $ex_1 = $ex ? 1 / $ex : Inf(); | |
return (ref $z)->make(CORE::cos($y) * ($ex - $ex_1)/2, | |
CORE::sin($y) * ($ex + $ex_1)/2); | |
} | |
# | |
# tanh | |
# | |
# Computes the hyperbolic tangent tanh(z) = sinh(z) / cosh(z). | |
# | |
sub tanh { | |
my ($z) = @_; | |
my $cz = cosh($z); | |
_divbyzero "tanh($z)", "cosh($z)" if ($cz == 0); | |
my $sz = sinh($z); | |
return 1 if $cz == $sz; | |
return -1 if $cz == -$sz; | |
return $sz / $cz; | |
} | |
# | |
# sech | |
# | |
# Computes the hyperbolic secant sech(z) = 1 / cosh(z). | |
# | |
sub sech { | |
my ($z) = @_; | |
my $cz = cosh($z); | |
_divbyzero "sech($z)", "cosh($z)" if ($cz == 0); | |
return 1 / $cz; | |
} | |
# | |
# csch | |
# | |
# Computes the hyperbolic cosecant csch(z) = 1 / sinh(z). | |
# | |
sub csch { | |
my ($z) = @_; | |
my $sz = sinh($z); | |
_divbyzero "csch($z)", "sinh($z)" if ($sz == 0); | |
return 1 / $sz; | |
} | |
# | |
# cosech | |
# | |
# Alias for csch(). | |
# | |
sub cosech { Math::Complex::csch(@_) } | |
# | |
# coth | |
# | |
# Computes the hyperbolic cotangent coth(z) = cosh(z) / sinh(z). | |
# | |
sub coth { | |
my ($z) = @_; | |
my $sz = sinh($z); | |
_divbyzero "coth($z)", "sinh($z)" if $sz == 0; | |
my $cz = cosh($z); | |
return 1 if $cz == $sz; | |
return -1 if $cz == -$sz; | |
return $cz / $sz; | |
} | |
# | |
# cotanh | |
# | |
# Alias for coth(). | |
# | |
sub cotanh { Math::Complex::coth(@_) } | |
# | |
# acosh | |
# | |
# Computes the area/inverse hyperbolic cosine acosh(z) = log(z + sqrt(z*z-1)). | |
# | |
sub acosh { | |
my ($z) = @_; | |
unless (ref $z) { | |
$z = cplx($z, 0); | |
} | |
my ($re, $im) = @{$z->_cartesian}; | |
if ($im == 0) { | |
return CORE::log($re + CORE::sqrt($re*$re - 1)) | |
if $re >= 1; | |
return cplx(0, CORE::atan2(CORE::sqrt(1 - $re*$re), $re)) | |
if CORE::abs($re) < 1; | |
} | |
my $t = &sqrt($z * $z - 1) + $z; | |
# Try Taylor if looking bad (this usually means that | |
# $z was large negative, therefore the sqrt is really | |
# close to abs(z), summing that with z...) | |
$t = 1/(2 * $z) - 1/(8 * $z**3) + 1/(16 * $z**5) - 5/(128 * $z**7) | |
if $t == 0; | |
my $u = &log($t); | |
$u->Im(-$u->Im) if $re < 0 && $im == 0; | |
return $re < 0 ? -$u : $u; | |
} | |
# | |
# asinh | |
# | |
# Computes the area/inverse hyperbolic sine asinh(z) = log(z + sqrt(z*z+1)) | |
# | |
sub asinh { | |
my ($z) = @_; | |
unless (ref $z) { | |
my $t = $z + CORE::sqrt($z*$z + 1); | |
return CORE::log($t) if $t; | |
} | |
my $t = &sqrt($z * $z + 1) + $z; | |
# Try Taylor if looking bad (this usually means that | |
# $z was large negative, therefore the sqrt is really | |
# close to abs(z), summing that with z...) | |
$t = 1/(2 * $z) - 1/(8 * $z**3) + 1/(16 * $z**5) - 5/(128 * $z**7) | |
if $t == 0; | |
return &log($t); | |
} | |
# | |
# atanh | |
# | |
# Computes the area/inverse hyperbolic tangent atanh(z) = 1/2 log((1+z) / (1-z)). | |
# | |
sub atanh { | |
my ($z) = @_; | |
unless (ref $z) { | |
return CORE::log((1 + $z)/(1 - $z))/2 if CORE::abs($z) < 1; | |
$z = cplx($z, 0); | |
} | |
_divbyzero 'atanh(1)', "1 - $z" if (1 - $z == 0); | |
_logofzero 'atanh(-1)' if (1 + $z == 0); | |
return 0.5 * &log((1 + $z) / (1 - $z)); | |
} | |
# | |
# asech | |
# | |
# Computes the area/inverse hyperbolic secant asech(z) = acosh(1 / z). | |
# | |
sub asech { | |
my ($z) = @_; | |
_divbyzero 'asech(0)', "$z" if ($z == 0); | |
return acosh(1 / $z); | |
} | |
# | |
# acsch | |
# | |
# Computes the area/inverse hyperbolic cosecant acsch(z) = asinh(1 / z). | |
# | |
sub acsch { | |
my ($z) = @_; | |
_divbyzero 'acsch(0)', $z if ($z == 0); | |
return asinh(1 / $z); | |
} | |
# | |
# acosech | |
# | |
# Alias for acosh(). | |
# | |
sub acosech { Math::Complex::acsch(@_) } | |
# | |
# acoth | |
# | |
# Computes the area/inverse hyperbolic cotangent acoth(z) = 1/2 log((1+z) / (z-1)). | |
# | |
sub acoth { | |
my ($z) = @_; | |
_divbyzero 'acoth(0)' if ($z == 0); | |
unless (ref $z) { | |
return CORE::log(($z + 1)/($z - 1))/2 if CORE::abs($z) > 1; | |
$z = cplx($z, 0); | |
} | |
_divbyzero 'acoth(1)', "$z - 1" if ($z - 1 == 0); | |
_logofzero 'acoth(-1)', "1 + $z" if (1 + $z == 0); | |
return &log((1 + $z) / ($z - 1)) / 2; | |
} | |
# | |
# acotanh | |
# | |
# Alias for acot(). | |
# | |
sub acotanh { Math::Complex::acoth(@_) } | |
# | |
# (atan2) | |
# | |
# Compute atan(z1/z2), minding the right quadrant. | |
# | |
sub atan2 { | |
my ($z1, $z2, $inverted) = @_; | |
my ($re1, $im1, $re2, $im2); | |
if ($inverted) { | |
($re1, $im1) = ref $z2 ? @{$z2->_cartesian} : ($z2, 0); | |
($re2, $im2) = ref $z1 ? @{$z1->_cartesian} : ($z1, 0); | |
} else { | |
($re1, $im1) = ref $z1 ? @{$z1->_cartesian} : ($z1, 0); | |
($re2, $im2) = ref $z2 ? @{$z2->_cartesian} : ($z2, 0); | |
} | |
if ($im1 || $im2) { | |
# In MATLAB the imaginary parts are ignored. | |
# warn "atan2: Imaginary parts ignored"; | |
# http://documents.wolfram.com/mathematica/functions/ArcTan | |
# NOTE: Mathematica ArcTan[x,y] while atan2(y,x) | |
my $s = $z1 * $z1 + $z2 * $z2; | |
_divbyzero("atan2") if $s == 0; | |
my $i = &i; | |
my $r = $z2 + $z1 * $i; | |
return -$i * &log($r / &sqrt( $s )); | |
} | |
return CORE::atan2($re1, $re2); | |
} | |
# | |
# display_format | |
# ->display_format | |
# | |
# Set (get if no argument) the display format for all complex numbers that | |
# don't happen to have overridden it via ->display_format | |
# | |
# When called as an object method, this actually sets the display format for | |
# the current object. | |
# | |
# Valid object formats are 'c' and 'p' for cartesian and polar. The first | |
# letter is used actually, so the type can be fully spelled out for clarity. | |
# | |
sub display_format { | |
my $self = shift; | |
my %display_format = %DISPLAY_FORMAT; | |
if (ref $self) { # Called as an object method | |
if (exists $self->{display_format}) { | |
my %obj = %{$self->{display_format}}; | |
@display_format{keys %obj} = values %obj; | |
} | |
} | |
if (@_ == 1) { | |
$display_format{style} = shift; | |
} else { | |
my %new = @_; | |
@display_format{keys %new} = values %new; | |
} | |
if (ref $self) { # Called as an object method | |
$self->{display_format} = { %display_format }; | |
return | |
wantarray ? | |
%{$self->{display_format}} : | |
$self->{display_format}->{style}; | |
} | |
# Called as a class method | |
%DISPLAY_FORMAT = %display_format; | |
return | |
wantarray ? | |
%DISPLAY_FORMAT : | |
$DISPLAY_FORMAT{style}; | |
} | |
# | |
# (_stringify) | |
# | |
# Show nicely formatted complex number under its cartesian or polar form, | |
# depending on the current display format: | |
# | |
# . If a specific display format has been recorded for this object, use it. | |
# . Otherwise, use the generic current default for all complex numbers, | |
# which is a package global variable. | |
# | |
sub _stringify { | |
my ($z) = shift; | |
my $style = $z->display_format; | |
$style = $DISPLAY_FORMAT{style} unless defined $style; | |
return $z->_stringify_polar if $style =~ /^p/i; | |
return $z->_stringify_cartesian; | |
} | |
# | |
# ->_stringify_cartesian | |
# | |
# Stringify as a cartesian representation 'a+bi'. | |
# | |
sub _stringify_cartesian { | |
my $z = shift; | |
my ($x, $y) = @{$z->_cartesian}; | |
my ($re, $im); | |
my %format = $z->display_format; | |
my $format = $format{format}; | |
if ($x) { | |
if ($x =~ /^NaN[QS]?$/i) { | |
$re = $x; | |
} else { | |
if ($x =~ /^-?\Q$Inf\E$/oi) { | |
$re = $x; | |
} else { | |
$re = defined $format ? sprintf($format, $x) : $x; | |
} | |
} | |
} else { | |
undef $re; | |
} | |
if ($y) { | |
if ($y =~ /^(NaN[QS]?)$/i) { | |
$im = $y; | |
} else { | |
if ($y =~ /^-?\Q$Inf\E$/oi) { | |
$im = $y; | |
} else { | |
$im = | |
defined $format ? | |
sprintf($format, $y) : | |
($y == 1 ? "" : ($y == -1 ? "-" : $y)); | |
} | |
} | |
$im .= "i"; | |
} else { | |
undef $im; | |
} | |
my $str = $re; | |
if (defined $im) { | |
if ($y < 0) { | |
$str .= $im; | |
} elsif ($y > 0 || $im =~ /^NaN[QS]?i$/i) { | |
$str .= "+" if defined $re; | |
$str .= $im; | |
} | |
} elsif (!defined $re) { | |
$str = "0"; | |
} | |
return $str; | |
} | |
# | |
# ->_stringify_polar | |
# | |
# Stringify as a polar representation '[r,t]'. | |
# | |
sub _stringify_polar { | |
my $z = shift; | |
my ($r, $t) = @{$z->_polar}; | |
my $theta; | |
my %format = $z->display_format; | |
my $format = $format{format}; | |
if ($t =~ /^NaN[QS]?$/i || $t =~ /^-?\Q$Inf\E$/oi) { | |
$theta = $t; | |
} elsif ($t == pi) { | |
$theta = "pi"; | |
} elsif ($r == 0 || $t == 0) { | |
$theta = defined $format ? sprintf($format, $t) : $t; | |
} | |
return "[$r,$theta]" if defined $theta; | |
# | |
# Try to identify pi/n and friends. | |
# | |
$t -= int(CORE::abs($t) / pi2) * pi2; | |
if ($format{polar_pretty_print} && $t) { | |
my ($a, $b); | |
for $a (2..9) { | |
$b = $t * $a / pi; | |
if ($b =~ /^-?\d+$/) { | |
$b = $b < 0 ? "-" : "" if CORE::abs($b) == 1; | |
$theta = "${b}pi/$a"; | |
last; | |
} | |
} | |
} | |
if (defined $format) { | |
$r = sprintf($format, $r); | |
$theta = sprintf($format, $t) unless defined $theta; | |
} else { | |
$theta = $t unless defined $theta; | |
} | |
return "[$r,$theta]"; | |
} | |
sub Inf { | |
return $Inf; | |
} | |
1; | |
__END__ | |
=pod | |
=head1 NAME | |
Math::Complex - complex numbers and associated mathematical functions | |
=head1 SYNOPSIS | |
use Math::Complex; | |
$z = Math::Complex->make(5, 6); | |
$t = 4 - 3*i + $z; | |
$j = cplxe(1, 2*pi/3); | |
=head1 DESCRIPTION | |
This package lets you create and manipulate complex numbers. By default, | |
I<Perl> limits itself to real numbers, but an extra C<use> statement brings | |
full complex support, along with a full set of mathematical functions | |
typically associated with and/or extended to complex numbers. | |
If you wonder what complex numbers are, they were invented to be able to solve | |
the following equation: | |
x*x = -1 | |
and by definition, the solution is noted I<i> (engineers use I<j> instead since | |
I<i> usually denotes an intensity, but the name does not matter). The number | |
I<i> is a pure I<imaginary> number. | |
The arithmetics with pure imaginary numbers works just like you would expect | |
it with real numbers... you just have to remember that | |
i*i = -1 | |
so you have: | |
5i + 7i = i * (5 + 7) = 12i | |
4i - 3i = i * (4 - 3) = i | |
4i * 2i = -8 | |
6i / 2i = 3 | |
1 / i = -i | |
Complex numbers are numbers that have both a real part and an imaginary | |
part, and are usually noted: | |
a + bi | |
where C<a> is the I<real> part and C<b> is the I<imaginary> part. The | |
arithmetic with complex numbers is straightforward. You have to | |
keep track of the real and the imaginary parts, but otherwise the | |
rules used for real numbers just apply: | |
(4 + 3i) + (5 - 2i) = (4 + 5) + i(3 - 2) = 9 + i | |
(2 + i) * (4 - i) = 2*4 + 4i -2i -i*i = 8 + 2i + 1 = 9 + 2i | |
A graphical representation of complex numbers is possible in a plane | |
(also called the I<complex plane>, but it's really a 2D plane). | |
The number | |
z = a + bi | |
is the point whose coordinates are (a, b). Actually, it would | |
be the vector originating from (0, 0) to (a, b). It follows that the addition | |
of two complex numbers is a vectorial addition. | |
Since there is a bijection between a point in the 2D plane and a complex | |
number (i.e. the mapping is unique and reciprocal), a complex number | |
can also be uniquely identified with polar coordinates: | |
[rho, theta] | |
where C<rho> is the distance to the origin, and C<theta> the angle between | |
the vector and the I<x> axis. There is a notation for this using the | |
exponential form, which is: | |
rho * exp(i * theta) | |
where I<i> is the famous imaginary number introduced above. Conversion | |
between this form and the cartesian form C<a + bi> is immediate: | |
a = rho * cos(theta) | |
b = rho * sin(theta) | |
which is also expressed by this formula: | |
z = rho * exp(i * theta) = rho * (cos theta + i * sin theta) | |
In other words, it's the projection of the vector onto the I<x> and I<y> | |
axes. Mathematicians call I<rho> the I<norm> or I<modulus> and I<theta> | |
the I<argument> of the complex number. The I<norm> of C<z> is | |
marked here as C<abs(z)>. | |
The polar notation (also known as the trigonometric representation) is | |
much more handy for performing multiplications and divisions of | |
complex numbers, whilst the cartesian notation is better suited for | |
additions and subtractions. Real numbers are on the I<x> axis, and | |
therefore I<y> or I<theta> is zero or I<pi>. | |
All the common operations that can be performed on a real number have | |
been defined to work on complex numbers as well, and are merely | |
I<extensions> of the operations defined on real numbers. This means | |
they keep their natural meaning when there is no imaginary part, provided | |
the number is within their definition set. | |
For instance, the C<sqrt> routine which computes the square root of | |
its argument is only defined for non-negative real numbers and yields a | |
non-negative real number (it is an application from B<R+> to B<R+>). | |
If we allow it to return a complex number, then it can be extended to | |
negative real numbers to become an application from B<R> to B<C> (the | |
set of complex numbers): | |
sqrt(x) = x >= 0 ? sqrt(x) : sqrt(-x)*i | |
It can also be extended to be an application from B<C> to B<C>, | |
whilst its restriction to B<R> behaves as defined above by using | |
the following definition: | |
sqrt(z = [r,t]) = sqrt(r) * exp(i * t/2) | |
Indeed, a negative real number can be noted C<[x,pi]> (the modulus | |
I<x> is always non-negative, so C<[x,pi]> is really C<-x>, a negative | |
number) and the above definition states that | |
sqrt([x,pi]) = sqrt(x) * exp(i*pi/2) = [sqrt(x),pi/2] = sqrt(x)*i | |
which is exactly what we had defined for negative real numbers above. | |
The C<sqrt> returns only one of the solutions: if you want the both, | |
use the C<root> function. | |
All the common mathematical functions defined on real numbers that | |
are extended to complex numbers share that same property of working | |
I<as usual> when the imaginary part is zero (otherwise, it would not | |
be called an extension, would it?). | |
A I<new> operation possible on a complex number that is | |
the identity for real numbers is called the I<conjugate>, and is noted | |
with a horizontal bar above the number, or C<~z> here. | |
z = a + bi | |
~z = a - bi | |
Simple... Now look: | |
z * ~z = (a + bi) * (a - bi) = a*a + b*b | |
We saw that the norm of C<z> was noted C<abs(z)> and was defined as the | |
distance to the origin, also known as: | |
rho = abs(z) = sqrt(a*a + b*b) | |
so | |
z * ~z = abs(z) ** 2 | |
If z is a pure real number (i.e. C<b == 0>), then the above yields: | |
a * a = abs(a) ** 2 | |
which is true (C<abs> has the regular meaning for real number, i.e. stands | |
for the absolute value). This example explains why the norm of C<z> is | |
noted C<abs(z)>: it extends the C<abs> function to complex numbers, yet | |
is the regular C<abs> we know when the complex number actually has no | |
imaginary part... This justifies I<a posteriori> our use of the C<abs> | |
notation for the norm. | |
=head1 OPERATIONS | |
Given the following notations: | |
z1 = a + bi = r1 * exp(i * t1) | |
z2 = c + di = r2 * exp(i * t2) | |
z = <any complex or real number> | |
the following (overloaded) operations are supported on complex numbers: | |
z1 + z2 = (a + c) + i(b + d) | |
z1 - z2 = (a - c) + i(b - d) | |
z1 * z2 = (r1 * r2) * exp(i * (t1 + t2)) | |
z1 / z2 = (r1 / r2) * exp(i * (t1 - t2)) | |
z1 ** z2 = exp(z2 * log z1) | |
~z = a - bi | |
abs(z) = r1 = sqrt(a*a + b*b) | |
sqrt(z) = sqrt(r1) * exp(i * t/2) | |
exp(z) = exp(a) * exp(i * b) | |
log(z) = log(r1) + i*t | |
sin(z) = 1/2i (exp(i * z1) - exp(-i * z)) | |
cos(z) = 1/2 (exp(i * z1) + exp(-i * z)) | |
atan2(y, x) = atan(y / x) # Minding the right quadrant, note the order. | |
The definition used for complex arguments of atan2() is | |
-i log((x + iy)/sqrt(x*x+y*y)) | |
Note that atan2(0, 0) is not well-defined. | |
The following extra operations are supported on both real and complex | |
numbers: | |
Re(z) = a | |
Im(z) = b | |
arg(z) = t | |
abs(z) = r | |
cbrt(z) = z ** (1/3) | |
log10(z) = log(z) / log(10) | |
logn(z, n) = log(z) / log(n) | |
tan(z) = sin(z) / cos(z) | |
csc(z) = 1 / sin(z) | |
sec(z) = 1 / cos(z) | |
cot(z) = 1 / tan(z) | |
asin(z) = -i * log(i*z + sqrt(1-z*z)) | |
acos(z) = -i * log(z + i*sqrt(1-z*z)) | |
atan(z) = i/2 * log((i+z) / (i-z)) | |
acsc(z) = asin(1 / z) | |
asec(z) = acos(1 / z) | |
acot(z) = atan(1 / z) = -i/2 * log((i+z) / (z-i)) | |
sinh(z) = 1/2 (exp(z) - exp(-z)) | |
cosh(z) = 1/2 (exp(z) + exp(-z)) | |
tanh(z) = sinh(z) / cosh(z) = (exp(z) - exp(-z)) / (exp(z) + exp(-z)) | |
csch(z) = 1 / sinh(z) | |
sech(z) = 1 / cosh(z) | |
coth(z) = 1 / tanh(z) | |
asinh(z) = log(z + sqrt(z*z+1)) | |
acosh(z) = log(z + sqrt(z*z-1)) | |
atanh(z) = 1/2 * log((1+z) / (1-z)) | |
acsch(z) = asinh(1 / z) | |
asech(z) = acosh(1 / z) | |
acoth(z) = atanh(1 / z) = 1/2 * log((1+z) / (z-1)) | |
I<arg>, I<abs>, I<log>, I<csc>, I<cot>, I<acsc>, I<acot>, I<csch>, | |
I<coth>, I<acosech>, I<acotanh>, have aliases I<rho>, I<theta>, I<ln>, | |
I<cosec>, I<cotan>, I<acosec>, I<acotan>, I<cosech>, I<cotanh>, | |
I<acosech>, I<acotanh>, respectively. C<Re>, C<Im>, C<arg>, C<abs>, | |
C<rho>, and C<theta> can be used also as mutators. The C<cbrt> | |
returns only one of the solutions: if you want all three, use the | |
C<root> function. | |
The I<root> function is available to compute all the I<n> | |
roots of some complex, where I<n> is a strictly positive integer. | |
There are exactly I<n> such roots, returned as a list. Getting the | |
number mathematicians call C<j> such that: | |
1 + j + j*j = 0; | |
is a simple matter of writing: | |
$j = ((root(1, 3))[1]; | |
The I<k>th root for C<z = [r,t]> is given by: | |
(root(z, n))[k] = r**(1/n) * exp(i * (t + 2*k*pi)/n) | |
You can return the I<k>th root directly by C<root(z, n, k)>, | |
indexing starting from I<zero> and ending at I<n - 1>. | |
The I<spaceship> numeric comparison operator, E<lt>=E<gt>, is also | |
defined. In order to ensure its restriction to real numbers is conform | |
to what you would expect, the comparison is run on the real part of | |
the complex number first, and imaginary parts are compared only when | |
the real parts match. | |
=head1 CREATION | |
To create a complex number, use either: | |
$z = Math::Complex->make(3, 4); | |
$z = cplx(3, 4); | |
if you know the cartesian form of the number, or | |
$z = 3 + 4*i; | |
if you like. To create a number using the polar form, use either: | |
$z = Math::Complex->emake(5, pi/3); | |
$x = cplxe(5, pi/3); | |
instead. The first argument is the modulus, the second is the angle | |
(in radians, the full circle is 2*pi). (Mnemonic: C<e> is used as a | |
notation for complex numbers in the polar form). | |
It is possible to write: | |
$x = cplxe(-3, pi/4); | |
but that will be silently converted into C<[3,-3pi/4]>, since the | |
modulus must be non-negative (it represents the distance to the origin | |
in the complex plane). | |
It is also possible to have a complex number as either argument of the | |
C<make>, C<emake>, C<cplx>, and C<cplxe>: the appropriate component of | |
the argument will be used. | |
$z1 = cplx(-2, 1); | |
$z2 = cplx($z1, 4); | |
The C<new>, C<make>, C<emake>, C<cplx>, and C<cplxe> will also | |
understand a single (string) argument of the forms | |
2-3i | |
-3i | |
[2,3] | |
[2,-3pi/4] | |
[2] | |
in which case the appropriate cartesian and exponential components | |
will be parsed from the string and used to create new complex numbers. | |
The imaginary component and the theta, respectively, will default to zero. | |
The C<new>, C<make>, C<emake>, C<cplx>, and C<cplxe> will also | |
understand the case of no arguments: this means plain zero or (0, 0). | |
=head1 DISPLAYING | |
When printed, a complex number is usually shown under its cartesian | |
style I<a+bi>, but there are legitimate cases where the polar style | |
I<[r,t]> is more appropriate. The process of converting the complex | |
number into a string that can be displayed is known as I<stringification>. | |
By calling the class method C<Math::Complex::display_format> and | |
supplying either C<"polar"> or C<"cartesian"> as an argument, you | |
override the default display style, which is C<"cartesian">. Not | |
supplying any argument returns the current settings. | |
This default can be overridden on a per-number basis by calling the | |
C<display_format> method instead. As before, not supplying any argument | |
returns the current display style for this number. Otherwise whatever you | |
specify will be the new display style for I<this> particular number. | |
For instance: | |
use Math::Complex; | |
Math::Complex::display_format('polar'); | |
$j = (root(1, 3))[1]; | |
print "j = $j\n"; # Prints "j = [1,2pi/3]" | |
$j->display_format('cartesian'); | |
print "j = $j\n"; # Prints "j = -0.5+0.866025403784439i" | |
The polar style attempts to emphasize arguments like I<k*pi/n> | |
(where I<n> is a positive integer and I<k> an integer within [-9, +9]), | |
this is called I<polar pretty-printing>. | |
For the reverse of stringifying, see the C<make> and C<emake>. | |
=head2 CHANGED IN PERL 5.6 | |
The C<display_format> class method and the corresponding | |
C<display_format> object method can now be called using | |
a parameter hash instead of just a one parameter. | |
The old display format style, which can have values C<"cartesian"> or | |
C<"polar">, can be changed using the C<"style"> parameter. | |
$j->display_format(style => "polar"); | |
The one parameter calling convention also still works. | |
$j->display_format("polar"); | |
There are two new display parameters. | |
The first one is C<"format">, which is a sprintf()-style format string | |
to be used for both numeric parts of the complex number(s). The is | |
somewhat system-dependent but most often it corresponds to C<"%.15g">. | |
You can revert to the default by setting the C<format> to C<undef>. | |
# the $j from the above example | |
$j->display_format('format' => '%.5f'); | |
print "j = $j\n"; # Prints "j = -0.50000+0.86603i" | |
$j->display_format('format' => undef); | |
print "j = $j\n"; # Prints "j = -0.5+0.86603i" | |
Notice that this affects also the return values of the | |
C<display_format> methods: in list context the whole parameter hash | |
will be returned, as opposed to only the style parameter value. | |
This is a potential incompatibility with earlier versions if you | |
have been calling the C<display_format> method in list context. | |
The second new display parameter is C<"polar_pretty_print">, which can | |
be set to true or false, the default being true. See the previous | |
section for what this means. | |
=head1 USAGE | |
Thanks to overloading, the handling of arithmetics with complex numbers | |
is simple and almost transparent. | |
Here are some examples: | |
use Math::Complex; | |
$j = cplxe(1, 2*pi/3); # $j ** 3 == 1 | |
print "j = $j, j**3 = ", $j ** 3, "\n"; | |
print "1 + j + j**2 = ", 1 + $j + $j**2, "\n"; | |
$z = -16 + 0*i; # Force it to be a complex | |
print "sqrt($z) = ", sqrt($z), "\n"; | |
$k = exp(i * 2*pi/3); | |
print "$j - $k = ", $j - $k, "\n"; | |
$z->Re(3); # Re, Im, arg, abs, | |
$j->arg(2); # (the last two aka rho, theta) | |
# can be used also as mutators. | |
=head1 CONSTANTS | |
=head2 PI | |
The constant C<pi> and some handy multiples of it (pi2, pi4, | |
and pip2 (pi/2) and pip4 (pi/4)) are also available if separately | |
exported: | |
use Math::Complex ':pi'; | |
$third_of_circle = pi2 / 3; | |
=head2 Inf | |
The floating point infinity can be exported as a subroutine Inf(): | |
use Math::Complex qw(Inf sinh); | |
my $AlsoInf = Inf() + 42; | |
my $AnotherInf = sinh(1e42); | |
print "$AlsoInf is $AnotherInf\n" if $AlsoInf == $AnotherInf; | |
Note that the stringified form of infinity varies between platforms: | |
it can be for example any of | |
inf | |
infinity | |
INF | |
1.#INF | |
or it can be something else. | |
Also note that in some platforms trying to use the infinity in | |
arithmetic operations may result in Perl crashing because using | |
an infinity causes SIGFPE or its moral equivalent to be sent. | |
The way to ignore this is | |
local $SIG{FPE} = sub { }; | |
=head1 ERRORS DUE TO DIVISION BY ZERO OR LOGARITHM OF ZERO | |
The division (/) and the following functions | |
log ln log10 logn | |
tan sec csc cot | |
atan asec acsc acot | |
tanh sech csch coth | |
atanh asech acsch acoth | |
cannot be computed for all arguments because that would mean dividing | |
by zero or taking logarithm of zero. These situations cause fatal | |
runtime errors looking like this | |
cot(0): Division by zero. | |
(Because in the definition of cot(0), the divisor sin(0) is 0) | |
Died at ... | |
or | |
atanh(-1): Logarithm of zero. | |
Died at... | |
For the C<csc>, C<cot>, C<asec>, C<acsc>, C<acot>, C<csch>, C<coth>, | |
C<asech>, C<acsch>, the argument cannot be C<0> (zero). For the | |
logarithmic functions and the C<atanh>, C<acoth>, the argument cannot | |
be C<1> (one). For the C<atanh>, C<acoth>, the argument cannot be | |
C<-1> (minus one). For the C<atan>, C<acot>, the argument cannot be | |
C<i> (the imaginary unit). For the C<atan>, C<acoth>, the argument | |
cannot be C<-i> (the negative imaginary unit). For the C<tan>, | |
C<sec>, C<tanh>, the argument cannot be I<pi/2 + k * pi>, where I<k> | |
is any integer. atan2(0, 0) is undefined, and if the complex arguments | |
are used for atan2(), a division by zero will happen if z1**2+z2**2 == 0. | |
Note that because we are operating on approximations of real numbers, | |
these errors can happen when merely `too close' to the singularities | |
listed above. | |
=head1 ERRORS DUE TO INDIGESTIBLE ARGUMENTS | |
The C<make> and C<emake> accept both real and complex arguments. | |
When they cannot recognize the arguments they will die with error | |
messages like the following | |
Math::Complex::make: Cannot take real part of ... | |
Math::Complex::make: Cannot take real part of ... | |
Math::Complex::emake: Cannot take rho of ... | |
Math::Complex::emake: Cannot take theta of ... | |
=head1 BUGS | |
Saying C<use Math::Complex;> exports many mathematical routines in the | |
caller environment and even overrides some (C<sqrt>, C<log>, C<atan2>). | |
This is construed as a feature by the Authors, actually... ;-) | |
All routines expect to be given real or complex numbers. Don't attempt to | |
use BigFloat, since Perl has currently no rule to disambiguate a '+' | |
operation (for instance) between two overloaded entities. | |
In Cray UNICOS there is some strange numerical instability that results | |
in root(), cos(), sin(), cosh(), sinh(), losing accuracy fast. Beware. | |
The bug may be in UNICOS math libs, in UNICOS C compiler, in Math::Complex. | |
Whatever it is, it does not manifest itself anywhere else where Perl runs. | |
=head1 SEE ALSO | |
L<Math::Trig> | |
=head1 AUTHORS | |
Daniel S. Lewart <F<lewart!at!uiuc.edu>>, | |
Jarkko Hietaniemi <F<jhi!at!iki.fi>>, | |
Raphael Manfredi <F<Raphael_Manfredi!at!pobox.com>>, | |
Zefram <[email protected]> | |
=head1 LICENSE | |
This library is free software; you can redistribute it and/or modify | |
it under the same terms as Perl itself. | |
=cut | |
1; | |
# eof | |