Spaces:
Sleeping
Sleeping
import streamlit as st | |
from PIL import Image | |
from transformers import pipeline | |
import datetime | |
import pandas as pd | |
import matplotlib.pyplot as plt | |
# Disable PyplotGlobalUseWarning | |
st.set_option('deprecation.showPyplotGlobalUse', False) | |
# Create an image classification pipeline with scores | |
pipe = pipeline("image-classification", model="trpakov/vit-face-expression", top_k=None) | |
# Streamlit app | |
st.title("Emotion Recognition with vit-face-expression") | |
# Upload images | |
uploaded_images = st.file_uploader("Upload images", type=["jpg", "png"], accept_multiple_files=True) | |
# Store selected file names | |
selected_file_names = [] | |
# Display thumbnail images alongside file names and sizes in the sidebar | |
selected_images = [] | |
if uploaded_images: | |
# Add a "Select All" checkbox in the sidebar | |
select_all = st.sidebar.checkbox("Select All", False) | |
for idx, img in enumerate(uploaded_images): | |
image = Image.open(img) | |
checkbox_key = f"{img.name}_checkbox_{idx}" # Unique key for each checkbox | |
# Display thumbnail image and checkbox in sidebar | |
st.sidebar.image(image, caption=f"{img.name} {img.size / 1024.0:.1f} KB", width=40) | |
#selected = st.sidebar.checkbox(f"Select {img.name}", value=False, key=checkbox_key) | |
# If "Select All" is checked, all individual checkboxes are selected | |
selected = st.sidebar.checkbox(f"Select {img.name}", value=select_all, key=checkbox_key) | |
if selected: | |
selected_images.append(image) | |
selected_file_names.append(img.name) | |
# Define results list to store prediction results | |
results = [] | |
if st.button("Predict Emotions") and selected_images: | |
emotions = [] | |
#results = [] # Define results list to store prediction results, add for DataFrame button | |
if len(selected_images) == 2: | |
# Predict emotion for each selected image using the pipeline | |
results = [pipe(image) for image in selected_images] | |
# Display images and predicted emotions side by side | |
col1, col2 = st.columns(2) | |
for i in range(2): | |
predicted_class = results[i][0]["label"] | |
predicted_emotion = predicted_class.split("_")[-1].capitalize() | |
emotions.append(predicted_emotion) | |
col = col1 if i == 0 else col2 | |
col.image(selected_images[i], caption=f"Predicted emotion: {predicted_emotion}", use_column_width=True) | |
col.write(f"Emotion Scores: {predicted_emotion}: {results[i][0]['score']:.4f}") | |
# Use the index to get the corresponding filename | |
col.write(f"Original File Name: {selected_file_names[i]}") | |
# Display the keys and values of all results | |
st.write("Keys and Values of all results:") | |
col1, col2 = st.columns(2) | |
for i, result in enumerate(results): | |
col = col1 if i == 0 else col2 | |
col.write(f"Keys and Values of results[{i}]:") | |
for res in result: | |
label = res["label"] | |
score = res["score"] | |
col.write(f"{label}: {score:.4f}") | |
else: | |
# Predict emotion for each selected image using the pipeline | |
results = [pipe(image) for image in selected_images] | |
# Display images and predicted emotions | |
for i, (image, result) in enumerate(zip(selected_images, results)): | |
predicted_class = result[0]["label"] | |
predicted_emotion = predicted_class.split("_")[-1].capitalize() | |
emotions.append(predicted_emotion) | |
st.image(image, caption=f"Predicted emotion: {predicted_emotion}", use_column_width=True) | |
st.write(f"Emotion Scores for #{i+1} Image") | |
st.write(f"{predicted_emotion}: {result[0]['score']:.4f}") | |
# Use the index to get the corresponding filename | |
st.write(f"Original File Name: {selected_file_names[i] if i < len(selected_file_names) else 'Unknown'}") | |
# Calculate emotion statistics | |
emotion_counts = pd.Series(emotions).value_counts() | |
# Define a color map that matches the emotions to specific colors | |
color_map = { | |
'Neutral': '#B38B6D', # Taupe | |
'Happy': '#FFFF00', # Yellow | |
'Sad': '#0000FF', # Blue | |
'Angry': '#FF0000', # Red | |
'Disgust': '#008000', # Green | |
'Surprise': '#FFA500', # Orange (Bright) | |
'Fear': '#000000' # Black | |
# Add more emotions and their corresponding colors here | |
} | |
# Calculate the total number of faces analyzed | |
total_faces = len(selected_images) | |
# Use the color map to assign colors to the pie chart | |
pie_colors = [color_map.get(emotion, '#999999') for emotion in emotion_counts.index] # Default to grey if not found | |
# Plot pie chart with total faces in the title | |
st.write("Emotion Distribution (Pie Chart):") | |
fig_pie, ax_pie = plt.subplots() | |
#font color | |
ax_pie.pie(emotion_counts, labels=emotion_counts.index, autopct='%1.1f%%', startangle=140, colors=pie_colors, textprops={'color': 'white', 'weight': 'bold'}) | |
ax_pie.pie(emotion_counts, labels=emotion_counts.index, autopct='%1.1f%%', startangle=140, colors=pie_colors) | |
ax_pie.axis('equal') # Equal aspect ratio ensures that pie is drawn as a circle. | |
# Add total faces to the title | |
ax_pie.set_title(f"Total Faces Analyzed: {total_faces}") | |
st.pyplot(fig_pie) | |
# Use the same color map for the bar chart | |
bar_colors = [color_map.get(emotion, '#999999') for emotion in emotion_counts.index] # Default to grey if not found | |
# Plot bar chart with total faces in the title | |
st.write("Emotion Distribution (Bar Chart):") | |
fig_bar, ax_bar = plt.subplots() | |
emotion_counts.plot(kind='bar', color=bar_colors, ax=ax_bar) | |
ax_bar.set_xlabel('Emotion') | |
ax_bar.set_ylabel('Count') | |
# Add total faces to the title | |
ax_bar.set_title(f"Emotion Distribution - Total Faces Analyzed: {total_faces}") | |
ax_bar.yaxis.set_major_locator(plt.MaxNLocator(integer=True)) # Ensure integer ticks on Y-axis | |
# Display bar values as integers | |
for i in ax_bar.patches: | |
ax_bar.text(i.get_x() + i.get_width() / 2, i.get_height() + 0.1, int(i.get_height()), ha='center', va='bottom') | |
st.pyplot(fig_bar) | |
# Debug statement to print the contents of the results list | |
if results: | |
st.write("Results list is populated:", results) | |
else: | |
st.error("Results list is empty.") | |
st.write("selected_images inner loop:", selected_images) | |
st.write("selected_file_names inner loop:", selected_file_names) | |
st.write("results inner loop:", results) | |
# Generate DataFrame button | |
if st.button("Generate DataFrame") and selected_images: | |
# Create a list to store data for DataFrame | |
df_data = [] | |
# Iterate through selected images to gather data | |
for image, file_name, result in zip(selected_images, selected_file_names, results): | |
# Extract image metadata | |
#st.write("selected_images inner loop:", selected_images) | |
#st.write("selected_file_names inner loop:", selected_file_names) | |
#st.write("results inner loop:", results) | |
size_kb = image.size[0] * image.size[1] / 1024.0 # Calculating size in KB | |
timestamp = datetime.datetime.now() # Current timestamp | |
color_type = "Color" if image.mode == 'RGB' else "Grayscale" | |
# Extract predicted emotions and scores | |
emotion_scores = {res["label"].split("_")[-1].capitalize(): res["score"] for res in result} | |
# Append image metadata and emotion scores to the list | |
df_data.append({ | |
"Neutral": f"{emotion_scores.get('neutral', 0.0):.4f}", | |
"Happy": f"{emotion_scores.get('happy', 0.0):.4f}", | |
"Sad": f"{emotion_scores.get('sad', 0.0):.4f}", | |
"Angry": f"{emotion_scores.get('angry', 0.0):.4f}", | |
"Disgust": f"{emotion_scores.get('disgust', 0.0):.4f}", | |
"Surprise": f"{emotion_scores.get('surprise', 0.0):.4f}", | |
"Fear": f"{emotion_scores.get('fear', 0.0):.4f}", # Add this line if 'Fear' is a possible label | |
"File Name": file_name, | |
"Size (KB)": size_kb, | |
"Timestamp": timestamp.strftime('%Y-%m-%d %H:%M:%S'), # Format timestamp | |
"Color Type": color_type | |
}) | |
# Create DataFrame | |
df = pd.DataFrame(df_data) | |
# Display DataFrame | |
st.write(df) | |