Spaces:
Sleeping
Sleeping
import streamlit as st | |
import torch | |
#streamlit clean | |
#streamlit run app.py | |
#pip install --upgrade pip | |
#curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh | |
from PIL import Image | |
#from transformers import ViTForImageClassification, ViTImageProcessor | |
from transformers import AutoImageProcessor, AutoModelForImageClassification | |
# Load the model | |
model_name = "trpakov/vit-face-expression" | |
image_processor = AutoImageProcessor.from_pretrained(model_name) | |
model = AutoModelForImageClassification.from_pretrained(model_name) | |
# Load the model | |
model_name = "trpakov/vit-face-expression" | |
#model = ViTForImageClassification.from_pretrained(model_name) | |
#image_processor = ViTImageProcessor.from_pretrained(model_name) | |
# Streamlit app | |
st.title("Emotion Recognition with vit-face-expression") | |
# Slider example | |
x = st.slider('Select a value') | |
st.write(f"{x} squared is {x * x}") | |
# Upload image | |
uploaded_image = st.file_uploader("Upload an image", type=["jpg", "png"]) | |
if uploaded_image: | |
image = Image.open(uploaded_image) | |
inputs = image_processor(images=image, return_tensors="pt") | |
pixel_values = inputs.pixel_values | |
# Predict emotion | |
with torch.no_grad(): | |
outputs = model(pixel_values) | |
predicted_class = torch.argmax(outputs.logits, dim=1).item() | |
emotion_labels = ["Angry", "Disgust", "Fear", "Happy", "Sad", "Surprise", "Neutral"] | |
predicted_emotion = emotion_labels[predicted_class] | |
st.image(image, caption=f"Predicted emotion: {predicted_emotion}", use_column_width=True) | |
# Display scores for each category | |
st.write("Emotion Scores:") | |
for label, score in zip(emotion_labels, outputs.logits[0]): | |
st.write(f"{label}: {score:.4f}") | |