Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,8 +2,8 @@ import streamlit as st
|
|
2 |
from PIL import Image
|
3 |
from transformers import pipeline
|
4 |
|
5 |
-
# Create an image classification pipeline
|
6 |
-
pipe = pipeline("image-classification", model="trpakov/vit-face-expression")
|
7 |
|
8 |
# Define emotion labels
|
9 |
emotion_labels = ["Happy", "Sad", "Angry", "Surprised", "Neutral"]
|
@@ -28,9 +28,6 @@ if uploaded_image:
|
|
28 |
st.image(image, caption=f"Predicted emotion: {predicted_emotion}", use_column_width=True)
|
29 |
|
30 |
# Display scores for each category
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
st.write(f"{label}: {score:.4f}")
|
35 |
-
else:
|
36 |
-
st.write("Emotion scores not available for this prediction.")
|
|
|
2 |
from PIL import Image
|
3 |
from transformers import pipeline
|
4 |
|
5 |
+
# Create an image classification pipeline with scores
|
6 |
+
pipe = pipeline("image-classification", model="trpakov/vit-face-expression", return_all_scores=True)
|
7 |
|
8 |
# Define emotion labels
|
9 |
emotion_labels = ["Happy", "Sad", "Angry", "Surprised", "Neutral"]
|
|
|
28 |
st.image(image, caption=f"Predicted emotion: {predicted_emotion}", use_column_width=True)
|
29 |
|
30 |
# Display scores for each category
|
31 |
+
st.write("Emotion Scores:")
|
32 |
+
for label, score in zip(emotion_labels, results[0]["scores"]):
|
33 |
+
st.write(f"{label}: {score:.4f}")
|
|
|
|
|
|