xtlyxt commited on
Commit
48d2197
·
verified ·
1 Parent(s): 8b67259

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +14 -124
app.py CHANGED
@@ -1,17 +1,16 @@
1
  import streamlit as st
2
  from PIL import Image
3
  from transformers import pipeline
4
- import datetime
5
  import pandas as pd
6
  import matplotlib.pyplot as plt
7
 
8
- # Disable PyplotGlobalUseWarning
9
- st.set_option('deprecation.showPyplotGlobalUse', False)
10
-
11
  # Initialize session state for results if not already present
12
  if 'results' not in st.session_state:
13
  st.session_state['results'] = []
14
 
 
 
 
15
  # Create an image classification pipeline with scores
16
  pipe = pipeline("image-classification", model="trpakov/vit-face-expression", top_k=None)
17
 
@@ -27,7 +26,6 @@ selected_file_names = []
27
  # Display thumbnail images alongside file names and sizes in the sidebar
28
  selected_images = []
29
  if uploaded_images:
30
-
31
  # Add a "Select All" checkbox in the sidebar
32
  select_all = st.sidebar.checkbox("Select All", False)
33
 
@@ -36,130 +34,24 @@ if uploaded_images:
36
  checkbox_key = f"{img.name}_checkbox_{idx}" # Unique key for each checkbox
37
  # Display thumbnail image and checkbox in sidebar
38
  st.sidebar.image(image, caption=f"{img.name} {img.size / 1024.0:.1f} KB", width=40)
39
- #selected = st.sidebar.checkbox(f"Select {img.name}", value=False, key=checkbox_key)
40
- # If "Select All" is checked, all individual checkboxes are selected
41
  selected = st.sidebar.checkbox(f"Select {img.name}", value=select_all, key=checkbox_key)
42
 
43
-
44
  if selected:
45
  selected_images.append(image)
46
  selected_file_names.append(img.name)
47
 
48
- # Define results list to store prediction results
49
- #results = []
50
-
51
-
52
  if st.button("Predict Emotions") and selected_images:
53
- emotions = []
54
- #results = [] # Define results list to store prediction results, add for DataFrame button
55
-
56
- if len(selected_images) == 2:
57
- # Predict emotion for each selected image using the pipeline
58
- results = [pipe(image) for image in selected_images]
59
-
60
- # Display images and predicted emotions side by side
61
- col1, col2 = st.columns(2)
62
- for i in range(2):
63
- predicted_class = results[i][0]["label"]
64
- predicted_emotion = predicted_class.split("_")[-1].capitalize()
65
- emotions.append(predicted_emotion)
66
- col = col1 if i == 0 else col2
67
- col.image(selected_images[i], caption=f"Predicted emotion: {predicted_emotion}", use_column_width=True)
68
- col.write(f"Emotion Scores: {predicted_emotion}: {results[i][0]['score']:.4f}")
69
- # Use the index to get the corresponding filename
70
- col.write(f"Original File Name: {selected_file_names[i]}")
71
-
72
- # Display the keys and values of all results
73
- st.write("Keys and Values of all results:")
74
- col1, col2 = st.columns(2)
75
- for i, result in enumerate(results):
76
- col = col1 if i == 0 else col2
77
- col.write(f"Keys and Values of results[{i}]:")
78
- for res in result:
79
- label = res["label"]
80
- score = res["score"]
81
- col.write(f"{label}: {score:.4f}")
82
- else:
83
- # Predict emotion for each selected image using the pipeline
84
- results = [pipe(image) for image in selected_images]
85
-
86
- # Display images and predicted emotions
87
- for i, (image, result) in enumerate(zip(selected_images, results)):
88
- predicted_class = result[0]["label"]
89
- predicted_emotion = predicted_class.split("_")[-1].capitalize()
90
- emotions.append(predicted_emotion)
91
- st.image(image, caption=f"Predicted emotion: {predicted_emotion}", use_column_width=True)
92
- st.write(f"Emotion Scores for #{i+1} Image")
93
- st.write(f"{predicted_emotion}: {result[0]['score']:.4f}")
94
- # Use the index to get the corresponding filename
95
- st.write(f"Original File Name: {selected_file_names[i] if i < len(selected_file_names) else 'Unknown'}")
96
-
97
- # Calculate emotion statistics
98
- emotion_counts = pd.Series(emotions).value_counts()
99
-
100
- # Define a color map that matches the emotions to specific colors
101
- color_map = {
102
- 'Neutral': '#B38B6D', # Taupe
103
- 'Happy': '#FFFF00', # Yellow
104
- 'Sad': '#0000FF', # Blue
105
- 'Angry': '#FF0000', # Red
106
- 'Disgust': '#008000', # Green
107
- 'Surprise': '#FFA500', # Orange (Bright)
108
- 'Fear': '#000000' # Black
109
- # Add more emotions and their corresponding colors here
110
- }
111
-
112
- # Calculate the total number of faces analyzed
113
- total_faces = len(selected_images)
114
-
115
- # Use the color map to assign colors to the pie chart
116
- pie_colors = [color_map.get(emotion, '#999999') for emotion in emotion_counts.index] # Default to grey if not found
117
-
118
- # Plot pie chart with total faces in the title
119
- st.write("Emotion Distribution (Pie Chart):")
120
- fig_pie, ax_pie = plt.subplots()
121
- #font color
122
- ax_pie.pie(emotion_counts, labels=emotion_counts.index, autopct='%1.1f%%', startangle=140, colors=pie_colors, textprops={'color': 'white', 'weight': 'bold'})
123
-
124
- ax_pie.pie(emotion_counts, labels=emotion_counts.index, autopct='%1.1f%%', startangle=140, colors=pie_colors)
125
- ax_pie.axis('equal') # Equal aspect ratio ensures that pie is drawn as a circle.
126
- # Add total faces to the title
127
- ax_pie.set_title(f"Total Faces Analyzed: {total_faces}")
128
- st.pyplot(fig_pie)
129
-
130
- # Use the same color map for the bar chart
131
- bar_colors = [color_map.get(emotion, '#999999') for emotion in emotion_counts.index] # Default to grey if not found
132
-
133
- # Plot bar chart with total faces in the title
134
- st.write("Emotion Distribution (Bar Chart):")
135
- fig_bar, ax_bar = plt.subplots()
136
- emotion_counts.plot(kind='bar', color=bar_colors, ax=ax_bar)
137
- ax_bar.set_xlabel('Emotion')
138
- ax_bar.set_ylabel('Count')
139
- # Add total faces to the title
140
- ax_bar.set_title(f"Emotion Distribution - Total Faces Analyzed: {total_faces}")
141
- ax_bar.yaxis.set_major_locator(plt.MaxNLocator(integer=True)) # Ensure integer ticks on Y-axis
142
- # Display bar values as integers
143
- for i in ax_bar.patches:
144
- ax_bar.text(i.get_x() + i.get_width() / 2, i.get_height() + 0.1, int(i.get_height()), ha='center', va='bottom')
145
-
146
- st.pyplot(fig_bar)
147
-
148
-
149
- # Debug statement to print the contents of the results list
150
- if results:
151
- st.write("Results list is populated:", results)
152
- else:
153
- st.error("Results list is empty.")
154
-
155
-
156
-
157
-
158
- st.write("selected_images info:", selected_images)
159
- st.write("selected_file_names info:", selected_file_names)
160
- st.write("results info:", results)
161
-
162
-
163
 
164
  # Generate DataFrame from results
165
  if st.button("Generate DataFrame"):
@@ -175,8 +67,6 @@ if st.button("Generate DataFrame"):
175
  'Disgust': [],
176
  'Angry': [],
177
  # Add other emotions if necessary
178
- 'Sad': [], # Add this if you have 'sad' scores in your results
179
- 'Fear': [] # Add this if you have 'fear' scores in your results
180
  }
181
 
182
  # Iterate over the results and populate the dictionary
 
1
  import streamlit as st
2
  from PIL import Image
3
  from transformers import pipeline
 
4
  import pandas as pd
5
  import matplotlib.pyplot as plt
6
 
 
 
 
7
  # Initialize session state for results if not already present
8
  if 'results' not in st.session_state:
9
  st.session_state['results'] = []
10
 
11
+ # Disable PyplotGlobalUseWarning
12
+ st.set_option('deprecation.showPyplotGlobalUse', False)
13
+
14
  # Create an image classification pipeline with scores
15
  pipe = pipeline("image-classification", model="trpakov/vit-face-expression", top_k=None)
16
 
 
26
  # Display thumbnail images alongside file names and sizes in the sidebar
27
  selected_images = []
28
  if uploaded_images:
 
29
  # Add a "Select All" checkbox in the sidebar
30
  select_all = st.sidebar.checkbox("Select All", False)
31
 
 
34
  checkbox_key = f"{img.name}_checkbox_{idx}" # Unique key for each checkbox
35
  # Display thumbnail image and checkbox in sidebar
36
  st.sidebar.image(image, caption=f"{img.name} {img.size / 1024.0:.1f} KB", width=40)
 
 
37
  selected = st.sidebar.checkbox(f"Select {img.name}", value=select_all, key=checkbox_key)
38
 
 
39
  if selected:
40
  selected_images.append(image)
41
  selected_file_names.append(img.name)
42
 
 
 
 
 
43
  if st.button("Predict Emotions") and selected_images:
44
+ # Predict emotion for each selected image using the pipeline
45
+ st.session_state['results'] = [pipe(image) for image in selected_images]
46
+ # Display images and predicted emotions
47
+ for i, (image, result) in enumerate(zip(selected_images, st.session_state['results'])):
48
+ predicted_class = result[0]["label"]
49
+ predicted_emotion = predicted_class.split("_")[-1].capitalize()
50
+ st.image(image, caption=f"Predicted emotion: {predicted_emotion}", use_column_width=True)
51
+ st.write(f"Emotion Scores for #{i+1} Image")
52
+ st.write(f"{predicted_emotion}: {result[0]['score']:.4f}")
53
+ # Use the index to get the corresponding filename
54
+ st.write(f"Original File Name: {selected_file_names[i] if i < len(selected_file_names) else 'Unknown'}")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55
 
56
  # Generate DataFrame from results
57
  if st.button("Generate DataFrame"):
 
67
  'Disgust': [],
68
  'Angry': [],
69
  # Add other emotions if necessary
 
 
70
  }
71
 
72
  # Iterate over the results and populate the dictionary