Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -5,6 +5,9 @@ from transformers import pipeline
|
|
5 |
# Create an image classification pipeline
|
6 |
pipe = pipeline("image-classification", model="trpakov/vit-face-expression")
|
7 |
|
|
|
|
|
|
|
8 |
# Streamlit app
|
9 |
st.title("Emotion Recognition with vit-face-expression")
|
10 |
|
@@ -24,8 +27,7 @@ if uploaded_image:
|
|
24 |
|
25 |
st.image(image, caption=f"Predicted emotion: {predicted_emotion}", use_column_width=True)
|
26 |
|
27 |
-
|
28 |
# Display scores for each category
|
29 |
st.write("Emotion Scores:")
|
30 |
-
for label, score in zip(emotion_labels,
|
31 |
st.write(f"{label}: {score:.4f}")
|
|
|
5 |
# Create an image classification pipeline
|
6 |
pipe = pipeline("image-classification", model="trpakov/vit-face-expression")
|
7 |
|
8 |
+
# Define emotion labels
|
9 |
+
emotion_labels = ["Happy", "Sad", "Angry", "Surprised", "Neutral"]
|
10 |
+
|
11 |
# Streamlit app
|
12 |
st.title("Emotion Recognition with vit-face-expression")
|
13 |
|
|
|
27 |
|
28 |
st.image(image, caption=f"Predicted emotion: {predicted_emotion}", use_column_width=True)
|
29 |
|
|
|
30 |
# Display scores for each category
|
31 |
st.write("Emotion Scores:")
|
32 |
+
for label, score in zip(emotion_labels, results[0]["scores"]):
|
33 |
st.write(f"{label}: {score:.4f}")
|