xtlyxt commited on
Commit
90c3057
·
verified ·
1 Parent(s): d3dabb5

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -5
app.py CHANGED
@@ -5,9 +5,6 @@ from transformers import pipeline
5
  # Create an image classification pipeline with scores
6
  pipe = pipeline("image-classification", model="trpakov/vit-face-expression", top_k=None)
7
 
8
- # Define emotion labels
9
- ##emotion_labels = ["Neutral", "Sad", "Angry", "Surprised", "Happy"]
10
-
11
  # Streamlit app
12
  st.title("Emotion Recognition with vit-face-expression")
13
 
@@ -39,12 +36,14 @@ if st.button("Predict Emotions") and uploaded_images:
39
 
40
  # Display the keys and values of all results
41
  st.write("Keys and Values of all results:")
 
42
  for i, result in enumerate(results):
43
- st.write(f"Keys and Values of results[{i}]:")
 
44
  for res in result:
45
  label = res["label"]
46
  score = res["score"]
47
- st.write(f"{label}: {score:.4f}")
48
 
49
  else:
50
  # Open the uploaded images
 
5
  # Create an image classification pipeline with scores
6
  pipe = pipeline("image-classification", model="trpakov/vit-face-expression", top_k=None)
7
 
 
 
 
8
  # Streamlit app
9
  st.title("Emotion Recognition with vit-face-expression")
10
 
 
36
 
37
  # Display the keys and values of all results
38
  st.write("Keys and Values of all results:")
39
+ col1, col2 = st.columns(2)
40
  for i, result in enumerate(results):
41
+ col = col1 if i == 0 else col2
42
+ col.write(f"Keys and Values of results[{i}]:")
43
  for res in result:
44
  label = res["label"]
45
  score = res["score"]
46
+ col.write(f"{label}: {score:.4f}")
47
 
48
  else:
49
  # Open the uploaded images