xtlyxt commited on
Commit
9d99378
·
verified ·
1 Parent(s): 96e0a88

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -9
app.py CHANGED
@@ -8,12 +8,9 @@ pipe = pipeline("image-classification", model="trpakov/vit-face-expression", top
8
  # Streamlit app
9
  st.title("Emotion Recognition with vit-face-expression")
10
 
11
- # Slider for adjusting image size
12
- image_size = st.slider('Adjust the image size', min_value=50, max_value=500, value=200)
13
-
14
  # Slider example
15
- x = st.slider('Select a value')
16
- st.write(f"{x} squared is {x * x}")
17
 
18
  # Upload images
19
  uploaded_images = st.file_uploader("Upload images", type=["jpg", "png"], accept_multiple_files=True)
@@ -41,7 +38,7 @@ if st.button("Predict Emotions") and selected_images:
41
  predicted_class = results[i][0]["label"]
42
  predicted_emotion = predicted_class.split("_")[-1].capitalize()
43
  col = col1 if i == 0 else col2
44
- col.image(selected_images[i], caption=f"Predicted emotion: {predicted_emotion}", use_column_width=True, width=image_size)
45
  col.write(f"Emotion Scores: {predicted_emotion}: {results[i][0]['score']:.4f}")
46
  # Use the index to get the corresponding filename
47
  col.write(f"Original File Name: {uploaded_images[i].name}")
@@ -64,10 +61,8 @@ if st.button("Predict Emotions") and selected_images:
64
  for i, (image, result) in enumerate(zip(selected_images, results)):
65
  predicted_class = result[0]["label"]
66
  predicted_emotion = predicted_class.split("_")[-1].capitalize()
67
- st.image(image, caption=f"Predicted emotion: {predicted_emotion}", use_column_width=True, width=image_size)
68
  st.write(f"Emotion Scores for #{i+1} Image")
69
  st.write(f"{predicted_emotion}: {result[0]['score']:.4f}")
70
  # Use the index to get the corresponding filename
71
  st.write(f"Original File Name: {uploaded_images[i].name if i < len(uploaded_images) else 'Unknown'}")
72
-
73
-
 
8
  # Streamlit app
9
  st.title("Emotion Recognition with vit-face-expression")
10
 
 
 
 
11
  # Slider example
12
+ #x = st.slider('Select a value')
13
+ #st.write(f"{x} squared is {x * x}")
14
 
15
  # Upload images
16
  uploaded_images = st.file_uploader("Upload images", type=["jpg", "png"], accept_multiple_files=True)
 
38
  predicted_class = results[i][0]["label"]
39
  predicted_emotion = predicted_class.split("_")[-1].capitalize()
40
  col = col1 if i == 0 else col2
41
+ col.image(selected_images[i], caption=f"Predicted emotion: {predicted_emotion}", use_column_width=True)
42
  col.write(f"Emotion Scores: {predicted_emotion}: {results[i][0]['score']:.4f}")
43
  # Use the index to get the corresponding filename
44
  col.write(f"Original File Name: {uploaded_images[i].name}")
 
61
  for i, (image, result) in enumerate(zip(selected_images, results)):
62
  predicted_class = result[0]["label"]
63
  predicted_emotion = predicted_class.split("_")[-1].capitalize()
64
+ st.image(image, caption=f"Predicted emotion: {predicted_emotion}", use_column_width=True)
65
  st.write(f"Emotion Scores for #{i+1} Image")
66
  st.write(f"{predicted_emotion}: {result[0]['score']:.4f}")
67
  # Use the index to get the corresponding filename
68
  st.write(f"Original File Name: {uploaded_images[i].name if i < len(uploaded_images) else 'Unknown'}")