xtlyxt commited on
Commit
a1ed311
·
verified ·
1 Parent(s): 384bc42

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +17 -8
app.py CHANGED
@@ -154,9 +154,13 @@ else:
154
  st.write("selected_images info:", selected_images)
155
  st.write("selected_file_names info:", selected_file_names)
156
  st.write("results info:", results)
157
-
 
 
158
  # Generate DataFrame from results
159
  if st.button("Generate DataFrame") and results:
 
 
160
  # Initialize an empty dictionary to store the scores
161
  emotion_scores = {
162
  'Neutral': [],
@@ -164,21 +168,25 @@ if st.button("Generate DataFrame") and results:
164
  'Surprise': [],
165
  'Disgust': [],
166
  'Angry': [],
 
167
  'Sad': [], # Add this if you have 'sad' scores in your results
168
  'Fear': [] # Add this if you have 'fear' scores in your results
169
  }
170
 
171
  # Iterate over the results and populate the dictionary
172
  for result_set in results:
 
 
 
173
  for result in result_set:
174
- # Capitalize the label and add the score to the corresponding list
175
  emotion = result['label'].capitalize()
176
- score = result['score']
177
- if emotion in emotion_scores:
178
- emotion_scores[emotion].append(score)
179
- else:
180
- # If the emotion is not in the dictionary, initialize a new list
181
- emotion_scores[emotion] = [score]
182
 
183
  # Convert the dictionary into a pandas DataFrame
184
  df_emotions = pd.DataFrame(emotion_scores)
@@ -189,3 +197,4 @@ if st.button("Generate DataFrame") and results:
189
  # Optional: Save the DataFrame to a CSV file
190
  df_emotions.to_csv('emotion_scores.csv', index=False)
191
  st.success('DataFrame generated and saved as emotion_scores.csv')
 
 
154
  st.write("selected_images info:", selected_images)
155
  st.write("selected_file_names info:", selected_file_names)
156
  st.write("results info:", results)
157
+
158
+
159
+
160
  # Generate DataFrame from results
161
  if st.button("Generate DataFrame") and results:
162
+ st.write("results info inner loop:", results)
163
+
164
  # Initialize an empty dictionary to store the scores
165
  emotion_scores = {
166
  'Neutral': [],
 
168
  'Surprise': [],
169
  'Disgust': [],
170
  'Angry': [],
171
+ # Add other emotions if necessary
172
  'Sad': [], # Add this if you have 'sad' scores in your results
173
  'Fear': [] # Add this if you have 'fear' scores in your results
174
  }
175
 
176
  # Iterate over the results and populate the dictionary
177
  for result_set in results:
178
+ # Initialize a dictionary for the current set with zeros
179
+ current_scores = {emotion: 0 for emotion in emotion_scores.keys()}
180
+
181
  for result in result_set:
182
+ # Capitalize the label and update the score in the current set
183
  emotion = result['label'].capitalize()
184
+ score = round(result['score'], 4) # Round the score to 4 decimal places
185
+ current_scores[emotion] = score
186
+
187
+ # Add the current scores to the emotion_scores dictionary
188
+ for emotion, score in current_scores.items():
189
+ emotion_scores[emotion].append(score)
190
 
191
  # Convert the dictionary into a pandas DataFrame
192
  df_emotions = pd.DataFrame(emotion_scores)
 
197
  # Optional: Save the DataFrame to a CSV file
198
  df_emotions.to_csv('emotion_scores.csv', index=False)
199
  st.success('DataFrame generated and saved as emotion_scores.csv')
200
+