Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,28 +1,9 @@
|
|
1 |
import streamlit as st
|
2 |
-
import torch
|
3 |
-
|
4 |
-
#streamlit clean
|
5 |
-
#streamlit run app.py
|
6 |
-
|
7 |
-
#pip install --upgrade pip
|
8 |
-
#curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh
|
9 |
-
|
10 |
-
|
11 |
from PIL import Image
|
12 |
-
|
13 |
-
|
14 |
|
15 |
-
|
16 |
-
|
17 |
-
# Load the model
|
18 |
-
model_name = "trpakov/vit-face-expression"
|
19 |
-
image_processor = AutoImageProcessor.from_pretrained(model_name)
|
20 |
-
model = AutoModelForImageClassification.from_pretrained(model_name)
|
21 |
-
|
22 |
-
# Load the model
|
23 |
-
model_name = "trpakov/vit-face-expression"
|
24 |
-
#model = ViTForImageClassification.from_pretrained(model_name)
|
25 |
-
#image_processor = ViTImageProcessor.from_pretrained(model_name)
|
26 |
|
27 |
# Streamlit app
|
28 |
st.title("Emotion Recognition with vit-face-expression")
|
@@ -36,21 +17,15 @@ uploaded_image = st.file_uploader("Upload an image", type=["jpg", "png"])
|
|
36 |
|
37 |
if uploaded_image:
|
38 |
image = Image.open(uploaded_image)
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
with torch.no_grad():
|
44 |
-
outputs = model(pixel_values)
|
45 |
-
predicted_class = torch.argmax(outputs.logits, dim=1).item()
|
46 |
-
|
47 |
-
emotion_labels = ["Angry", "Disgust", "Fear", "Happy", "Sad", "Surprise", "Neutral"]
|
48 |
-
predicted_emotion = emotion_labels[predicted_class]
|
49 |
|
50 |
st.image(image, caption=f"Predicted emotion: {predicted_emotion}", use_column_width=True)
|
51 |
|
52 |
|
53 |
# Display scores for each category
|
54 |
-
st.write("Emotion Scores:")
|
55 |
-
for label, score in zip(emotion_labels, outputs.logits[0]):
|
56 |
-
|
|
|
1 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
from PIL import Image
|
3 |
+
from transformers import pipeline
|
|
|
4 |
|
5 |
+
# Create an image classification pipeline
|
6 |
+
pipe = pipeline("image-classification", model="trpakov/vit-face-expression")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
# Streamlit app
|
9 |
st.title("Emotion Recognition with vit-face-expression")
|
|
|
17 |
|
18 |
if uploaded_image:
|
19 |
image = Image.open(uploaded_image)
|
20 |
+
# Predict emotion using the pipeline
|
21 |
+
results = pipe(image)
|
22 |
+
predicted_class = results[0]["label"]
|
23 |
+
predicted_emotion = predicted_class.split("_")[-1].capitalize()
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
st.image(image, caption=f"Predicted emotion: {predicted_emotion}", use_column_width=True)
|
26 |
|
27 |
|
28 |
# Display scores for each category
|
29 |
+
#st.write("Emotion Scores:")
|
30 |
+
#for label, score in zip(emotion_labels, outputs.logits[0]):
|
31 |
+
# st.write(f"{label}: {score:.4f}")
|