Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -151,45 +151,30 @@ else:
|
|
151 |
|
152 |
|
153 |
|
154 |
-
st.write("selected_images
|
155 |
-
st.write("selected_file_names
|
156 |
-
st.write("results
|
157 |
|
158 |
|
159 |
-
|
160 |
# Generate DataFrame button
|
161 |
if st.button("Generate DataFrame") and selected_images:
|
162 |
# Create a list to store data for DataFrame
|
163 |
df_data = []
|
164 |
|
165 |
# Iterate through selected images to gather data
|
166 |
-
for
|
167 |
-
# Extract image metadata
|
168 |
-
|
169 |
-
#st.write("selected_images inner loop:", selected_images)
|
170 |
-
#st.write("selected_file_names inner loop:", selected_file_names)
|
171 |
-
#st.write("results inner loop:", results)
|
172 |
-
|
173 |
-
size_kb = image.size[0] * image.size[1] / 1024.0 # Calculating size in KB
|
174 |
-
timestamp = datetime.datetime.now() # Current timestamp
|
175 |
-
color_type = "Color" if image.mode == 'RGB' else "Grayscale"
|
176 |
-
|
177 |
# Extract predicted emotions and scores
|
178 |
emotion_scores = {res["label"].split("_")[-1].capitalize(): res["score"] for res in result}
|
179 |
|
180 |
-
# Append
|
181 |
df_data.append({
|
182 |
-
"Neutral": f"{emotion_scores.get('
|
183 |
-
"Happy": f"{emotion_scores.get('
|
184 |
-
"Sad": f"{emotion_scores.get('
|
185 |
-
"Angry": f"{emotion_scores.get('
|
186 |
-
"Disgust": f"{emotion_scores.get('
|
187 |
-
"Surprise": f"{emotion_scores.get('
|
188 |
-
"Fear": f"{emotion_scores.get('
|
189 |
-
"File Name": file_name,
|
190 |
-
"Size (KB)": size_kb,
|
191 |
-
"Timestamp": timestamp.strftime('%Y-%m-%d %H:%M:%S'), # Format timestamp
|
192 |
-
"Color Type": color_type
|
193 |
})
|
194 |
|
195 |
# Create DataFrame
|
|
|
151 |
|
152 |
|
153 |
|
154 |
+
st.write("selected_images info:", selected_images)
|
155 |
+
st.write("selected_file_names info:", selected_file_names)
|
156 |
+
st.write("results info:", results)
|
157 |
|
158 |
|
|
|
159 |
# Generate DataFrame button
|
160 |
if st.button("Generate DataFrame") and selected_images:
|
161 |
# Create a list to store data for DataFrame
|
162 |
df_data = []
|
163 |
|
164 |
# Iterate through selected images to gather data
|
165 |
+
for result in results:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
166 |
# Extract predicted emotions and scores
|
167 |
emotion_scores = {res["label"].split("_")[-1].capitalize(): res["score"] for res in result}
|
168 |
|
169 |
+
# Append emotion scores to the list
|
170 |
df_data.append({
|
171 |
+
"Neutral": f"{emotion_scores.get('Neutral', 0.0):.4f}",
|
172 |
+
"Happy": f"{emotion_scores.get('Happy', 0.0):.4f}",
|
173 |
+
"Sad": f"{emotion_scores.get('Sad', 0.0):.4f}",
|
174 |
+
"Angry": f"{emotion_scores.get('Angry', 0.0):.4f}",
|
175 |
+
"Disgust": f"{emotion_scores.get('Disgust', 0.0):.4f}",
|
176 |
+
"Surprise": f"{emotion_scores.get('Surprise', 0.0):.4f}",
|
177 |
+
"Fear": f"{emotion_scores.get('Fear', 0.0):.4f}" # Add this line if 'Fear' is a possible label
|
|
|
|
|
|
|
|
|
178 |
})
|
179 |
|
180 |
# Create DataFrame
|