xtlyxt commited on
Commit
ee48256
·
verified ·
1 Parent(s): 57b82c3

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +13 -4
app.py CHANGED
@@ -76,13 +76,22 @@ if st.button("Predict Emotions") and selected_images:
76
 
77
  # Define a color map that matches the emotions to specific colors
78
  color_map = {
79
- 'Happy': '#ff9999',
80
- 'Sad': '#66b3ff',
81
- 'Angry': '#99ff99',
82
- 'Surprised': '#ffcc99'
 
 
 
83
  # Add more emotions and their corresponding colors here
84
  }
85
 
 
 
 
 
 
 
86
  # Use the color map to assign colors to the pie chart
87
  pie_colors = [color_map.get(emotion, '#999999') for emotion in emotion_counts.index] # Default to grey if not found
88
 
 
76
 
77
  # Define a color map that matches the emotions to specific colors
78
  color_map = {
79
+ 'Neutral': '#B38B6D', # Taupe
80
+ 'Happy': '#FFFF00', # Yellow
81
+ 'Sad': '#0000FF', # Blue
82
+ 'Angry': '#FF0000', # Red
83
+ 'Disgust': '#008000', # Green
84
+ 'Surprise': '#FFA500', # Orange (Bright)
85
+ 'Fear': '#000000' # Black
86
  # Add more emotions and their corresponding colors here
87
  }
88
 
89
+ #https://link.springer.com/article/10.3758/s13428-015-0598-8#:~:text=The%20color%20red%20was%20most%20associated%20with%20anger%2C%20green%20with,%E2%80%9D%20or%20%E2%80%9Cfeeling%20blue.%E2%80%9D
90
+
91
+ #The color red was most associated with anger, green with disgust, black with fear, yellow with happiness, blue with sadness,
92
+ #and bright with surprise. These associations may be a result of various expressions containing color terms that are used in the
93
+ #English language—for example, “seeing red” or “feeling blue.”May 19, 2015
94
+
95
  # Use the color map to assign colors to the pie chart
96
  pie_colors = [color_map.get(emotion, '#999999') for emotion in emotion_counts.index] # Default to grey if not found
97