xtlyxt commited on
Commit
f1806c7
·
verified ·
1 Parent(s): cfe25b2

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +33 -38
app.py CHANGED
@@ -143,41 +143,36 @@ if st.button("Predict Emotions") and selected_images:
143
 
144
  # Generate DataFrame button
145
  if st.button("Generate DataFrame") and selected_images:
146
- # Ensure results are populated before generating the DataFrame
147
- if len(results) == 0:
148
- st.error("Please click 'Predict Emotions' to generate results first.")
149
- else:
150
- # Create a list to store data for DataFrame
151
- df_data = []
152
-
153
- # Iterate through selected images to gather data
154
- for image, file_name, result in zip(selected_images, selected_file_names, results):
155
- # Extract image metadata
156
- size_kb = image.size[0] * image.size[1] / 1024.0 # Calculating size in KB
157
- timestamp = datetime.datetime.now() # Current timestamp
158
- color_type = "Color" if len(image.getbands()) > 1 else "Grayscale"
159
-
160
- # Extract predicted emotions and scores
161
- emotion_scores = {res["label"].split("_")[-1].capitalize(): res["score"] for res in result}
162
-
163
- # Append image metadata and emotion scores to the list
164
- df_data.append({
165
- "Neutral": f"{emotion_scores.get('Neutral', 0.0):.4f}",
166
- "Happy": f"{emotion_scores.get('Happy', 0.0):.4f}",
167
- "Sad": f"{emotion_scores.get('Sad', 0.0):.4f}",
168
- "Angry": f"{emotion_scores.get('Angry', 0.0):.4f}",
169
- "Disgust": f"{emotion_scores.get('Disgust', 0.0):.4f}",
170
- "Surprise": f"{emotion_scores.get('Surprise', 0.0):.4f}",
171
- "Fear": f"{emotion_scores.get('Fear', 0.0):.4f}",
172
- "File Name": file_name,
173
- "Size (KB)": size_kb,
174
- "Timestamp": timestamp,
175
- "Color Type": color_type
176
- })
177
-
178
- # Create DataFrame
179
- df = pd.DataFrame(df_data)
180
-
181
- # Display DataFrame
182
- st.write(df)
183
-
 
143
 
144
  # Generate DataFrame button
145
  if st.button("Generate DataFrame") and selected_images:
146
+ # Create a list to store data for DataFrame
147
+ df_data = []
148
+
149
+ # Iterate through selected images to gather data
150
+ for image, file_name, result in zip(selected_images, selected_file_names, results):
151
+ # Extract image metadata
152
+ size_kb = image.size[0] * image.size[1] / 1024.0 # Calculating size in KB
153
+ timestamp = datetime.datetime.now() # Current timestamp
154
+ color_type = "Color" if len(image.getbands()) > 1 else "Grayscale"
155
+
156
+ # Extract predicted emotions and scores
157
+ emotion_scores = {res["label"].split("_")[-1].capitalize(): res["score"] for res in result}
158
+
159
+ # Append image metadata and emotion scores to the list
160
+ df_data.append({
161
+ "Neutral": f"{emotion_scores.get('Neutral', 0.0):.4f}",
162
+ "Happy": f"{emotion_scores.get('Happy', 0.0):.4f}",
163
+ "Sad": f"{emotion_scores.get('Sad', 0.0):.4f}",
164
+ "Angry": f"{emotion_scores.get('Angry', 0.0):.4f}",
165
+ "Disgust": f"{emotion_scores.get('Disgust', 0.0):.4f}",
166
+ "Surprise": f"{emotion_scores.get('Surprise', 0.0):.4f}",
167
+ "Fear": f"{emotion_scores.get('Fear', 0.0):.4f}",
168
+ "File Name": file_name,
169
+ "Size (KB)": size_kb,
170
+ "Timestamp": timestamp,
171
+ "Color Type": color_type
172
+ })
173
+
174
+ # Create DataFrame
175
+ df = pd.DataFrame(df_data)
176
+
177
+ # Display DataFrame
178
+ st.write(df)