File size: 2,591 Bytes
c47d064
 
 
c0f7cf1
 
 
 
 
 
 
 
c47d064
 
 
c0f7cf1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c47d064
 
c0f7cf1
 
 
 
 
c47d064
c0f7cf1
c47d064
 
 
c0f7cf1
c47d064
 
 
 
 
 
 
 
 
 
 
c0f7cf1
 
 
4d60f4c
c47d064
c0f7cf1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c47d064
 
 
c0f7cf1
c47d064
 
 
 
 
 
 
 
c0f7cf1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import gradio as gr
from huggingface_hub import InferenceClient


SYSTEM_MESSAGE_DEFAULT = "You are a friendly Chatbot."
MAX_TOKENS_DEFAULT = 512
TEMPERATURE_DEFAULT = 0.7
TOP_P_DEFAULT = 0.95


inference_client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")


def respond(
    user_message: str,
    conversation_history: list[tuple[str, str]],
    system_message: str,
    max_tokens: int,
    temperature: float,
    top_p: float,
) -> str:
    """
    Respond to a user message given the conversation history and other parameters.

    Args:
        user_message (str): The user's message.
        conversation_history (list[tuple[str, str]]): The conversation history.
        system_message (str): The system message to display at the top of the chat interface.
        max_tokens (int): The maximum number of tokens to generate in the response.
        temperature (float): The temperature to use when generating text.
        top_p (float): The top-p value to use when generating text.

    Returns:
        str: The response to the user's message.
    """
    messages = [{"role": "system", "content": system_message}]

    for user_input, assistant_response in conversation_history:
        if user_input:
            messages.append({"role": "user", "content": user_input})
        if assistant_response:
            messages.append({"role": "assistant", "content": assistant_response})

    messages.append({"role": "user", "content": user_message})

    response = ""

    for message in inference_client.chat_completion(
        messages,
        max_tokens=max_tokens,
        stream=True,
        temperature=temperature,
        top_p=top_p,
    ):
        token = message.choices[0].delta.content

        response += token
        yield response


chatbot_interface = gr.ChatInterface(
    fn=respond,
    chatbot=gr.Chatbot(height=600),
    additional_inputs=[
        gr.Textbox(
            value=SYSTEM_MESSAGE_DEFAULT,
            label="System message",
        ),
        gr.Slider(
            minimum=1,
            maximum=2048,
            value=MAX_TOKENS_DEFAULT,
            step=1,
            label="Max new tokens",
        ),
        gr.Slider(
            minimum=0.1,
            maximum=4.0,
            value=TEMPERATURE_DEFAULT,
            step=0.1,
            label="Temperature",
        ),
        gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=TOP_P_DEFAULT,
            step=0.05,
            label="Top-p (nucleus sampling)",
        ),
    ],
)


if __name__ == "__main__":
    chatbot_interface.launch()