File size: 6,001 Bytes
9dc0e21
 
 
8988bbf
 
 
931d3ff
8988bbf
 
 
 
 
 
 
 
f0929ee
 
 
 
 
 
 
9dc0e21
 
c38b609
e74047c
973bde6
 
41bb1cf
8988bbf
 
f29252d
5799733
459fbe3
9dc0e21
 
 
 
b099d9e
 
 
931d3ff
 
b099d9e
 
931d3ff
 
459fbe3
 
5658533
b420ebd
c38b609
 
 
 
 
931d3ff
c38b609
f0929ee
5658533
4e4c514
c38b609
973bde6
 
 
e74047c
98b5498
 
 
 
 
1b2b08c
e74047c
459fbe3
 
 
 
e74047c
5799733
98b5498
e74047c
c38b609
98b5498
 
 
b099d9e
 
 
123d4a3
98b5498
 
 
 
04a7868
d47c36f
 
 
98b5498
d47c36f
98b5498
e52ef2a
 
 
98b5498
e52ef2a
04a7868
123d4a3
e52ef2a
d47c36f
e74047c
b099d9e
e74047c
b099d9e
9dc0e21
b099d9e
3ac04fa
b6dd571
 
b099d9e
 
e74047c
 
 
b6dd571
b099d9e
e74047c
 
b099d9e
e52ef2a
4e4c514
46ea35b
4e4c514
9dc0e21
8988bbf
9dc0e21
 
 
7d0829c
0064c50
aa1923f
0064c50
7d0829c
 
d47c36f
98b5498
 
aa1923f
0064c50
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
"""
https://github.com/abetlen/llama-cpp-python/blob/main/examples/gradio_chat/local.py
https://github.com/awinml/llama-cpp-python-bindings

python convert_hf_to_gguf.py --outtype f16 Qwen1.5-0.5B-Chat

python convert_hf_to_gguf.py /workspace/xusong/huggingface/models/Qwen2-0.5B-Instruct/


./llama-cli -m /workspace/xusong/huggingface/models/Qwen1.5-0.5B-Chat/Qwen1.5-0.5B-Chat-F16.gguf -p "I believe the meaning of life is" -n 128

./llama-cli -m /workspace/xusong/huggingface/models/Qwen1.5-0.5B-Chat/Qwen1.5-0.5B-Chat-F16.gguf -f prompt.txt -n 128

./llama-cli -m /workspace/xusong/huggingface/models/Qwen1.5-0.5B-Chat/Qwen1.5-0.5B-Chat-F16.gguf -p "You are a helpful assistant" -cnv


## reference

- https://github.com/langchain-ai/langchain/blob/master/libs/community/langchain_community/llms/llamacpp.py
- https://github.com/abetlen/llama-cpp-python/blob/main/examples/gradio_chat/server.py
- https://github.com/abetlen/llama-cpp-python/blob/main/llama_cpp/server/app.py

"""

import json
import copy
import os

from models.base_model import Simulator
import llama_cpp
# import llama_cpp.llama_tokenizer
from transformers import AutoTokenizer
from utils.logging_util import logger
import config


class Qwen2Simulator(Simulator):

    def __init__(self):
        local_path = "/workspace/xusong/huggingface/models/Qwen2-0.5B-Instruct-GGUF/qwen2-0_5b-instruct-fp16.gguf"
        if os.path.exists(local_path):
            self.hf_tokenizer = AutoTokenizer.from_pretrained(
                "/workspace/xusong/huggingface/models/Qwen2-0.5B-Instruct/")
            self.llm = llama_cpp.Llama(  # n_ctx, n_threads
                model_path=local_path,
                # 默认的tokenizer有bug,tokenize后的id不同
                tokenizer=llama_cpp.llama_tokenizer.LlamaHFTokenizer(self.hf_tokenizer),
                n_ctx=config.MAX_SEQUENCE_LENGTH,  #
                # n_threads=None, # 默认会根据cpu数来设置 n_threads
                # use_mlock=True,
                verbose=True,
            )
        else:
            self.hf_tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-0.5B-Instruct")
            self.llm = llama_cpp.Llama.from_pretrained(
                repo_id="Qwen/Qwen2-0.5B-Instruct-GGUF",
                tokenizer=llama_cpp.llama_tokenizer.LlamaHFTokenizer(self.hf_tokenizer),
                filename="*fp16.gguf",
                n_ctx=config.MAX_SEQUENCE_LENGTH,
                # use_mlock=True,
                verbose=True,
            )
        logger.info(f"llm has been initialized: {self.llm}, "
                    f"n_threads={self.llm.n_threads}, n_ctx={self.llm.n_ctx}, "
                    f"env[CACHE]={os.environ.get('CACHE', None)}")

        self.stop_words = [
            "<|im_end|>",
            "<|im_start|>",
            "<|endoftext|>",
        ]
        self.stop_tokens = self.tokenize("".join(self.stop_words))
        self.generation_kwargs = dict(
            temperature=config.DEFAULT_TEMPERATURE,
            top_p=config.DEFAULT_TOP_P,
            top_k=config.DEFAULT_TOP_K,
            max_tokens=config.DEFAULT_MAX_TOKENS,
            repeat_penalty=1.1,
            # qwen2-0.5b-chat 有时内容生成结束没有<|im_end|>,直接跟 <|im_start|>
            stop=self.stop_words,
        )

        self.user_start_tokens = self.tokenize("<|im_start|>user\n")
        self.assistant_start_tokens = self.tokenize("<|im_start|>assistant\n")

    def tokenize(self, text):
        return self.llm.tokenize(text.encode("utf-8"))

    def strip_stoptokens(self, tokens):
        while tokens and tokens[0] in self.stop_tokens:
            tokens.pop(0)
        while tokens and tokens[-1] in self.stop_tokens:
            tokens.pop()
        return tokens

    def generate(self, history, stream=True):
        if history[-1]['role'] in ["user"]:
            start_tokens = self.assistant_start_tokens
        elif history[-1]['role'] in ["assistant", "system"]:
            start_tokens = self.user_start_tokens

        input_ids = []
        for message in history:
            if "tokens" not in message:  # tokens
                message["tokens"] = self.tokenize(message["content"])
            input_ids += self.tokenize(f"<|im_start|>{message['role']}\n") \
                         + message["tokens"] \
                         + self.tokenize("<|im_end|>\n")
        input_ids += start_tokens
        if stream:
            return self._stream_generate(input_ids)
        else:
            return self._generate(input_ids)

    def _stream_generate(self, input_ids):
        logger.info(f"generation_kwargs {self.generation_kwargs}")

        # self.llm.generate  .set_cache   .last_n_tokens_size  .reset  .ctx ._ctx
        output = self.llm.create_completion(
            input_ids,
            stream=True,
            **self.generation_kwargs
        )
        # TODO: 检测finish reason,如果是length,则shift,并继续生成。
        # TODO: 返回 token_id,
        for out in output:
            stream = copy.deepcopy(out)
            if stream["choices"][0]["finish_reason"] is None:
                yield stream["choices"][0]["completion_text"], stream["choices"][0]["completion_tokens"]
            else:
                print(f'finish_reason with text: {stream["choices"][0]["text"]}')


bot = Qwen2Simulator()

if __name__ == "__main__":

    messages = [{"role": "system", "content": "你是一个导游。"}]
    generated_tokens = None
    print("######## requesting", messages)
    for generated_text, generated_tokens in bot.generate(messages, stream=True):
        print(generated_text, generated_tokens)

    for i in range(3):
        messages.append(
            {"role": "user" if i % 2 == 0 else "assistant", "content": generated_text, "tokens": generated_tokens})
        print("######## requesting", messages)
        for generated_text, generated_tokens in bot.generate(messages, stream=True):
            pass
            # print(generated_text, all_tokens)