File size: 2,886 Bytes
9dc0e21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
"""
https://github.com/abetlen/llama-cpp-python/blob/main/examples/gradio_chat/local.py
https://github.com/awinml/llama-cpp-python-bindings
"""

from simulator import Simulator
from llama_cpp import Llama
import llama_cpp.llama_tokenizer


class Qwen2Simulator(Simulator):

    def __init__(self, model_name_or_path=None):
        # self.llm = llama_cpp.Llama.from_pretrained(
        #     repo_id="Qwen/Qwen1.5-0.5B-Chat-GGUF",
        #     filename="*q8_0.gguf",  #
        #     tokenizer=llama_cpp.llama_tokenizer.LlamaHFTokenizer.from_pretrained(
        #         "Qwen/Qwen1.5-0.5B-Chat"
        #     ),
        #     verbose=False,
        # )

        self.llm = Llama(
            model_path="Qwen/Qwen1.5-0.5B-Chat-GGUF/qwen1_5-0_5b-chat-q8_0.gguf",
            # n_gpu_layers=-1, # Uncomment to use GPU acceleration
            # seed=1337, # Uncomment to set a specific seed
            # n_ctx=2048, # Uncomment to increase the context window
            tokenizer=llama_cpp.llama_tokenizer.LlamaHFTokenizer.from_pretrained(
                "/workspace/czy/model_weights/Qwen1.5-0.5B-Chat/"
            ),
            verbose=False,
        )


    def generate_query(self, messages):
        """
        :param messages:
        :return:
        """
        assert messages[-1]["role"] != "user"
        inputs = self.tokenizer.apply_chat_template(
            messages,
            tokenize=False,
            add_generation_prompt=False,
        )
        inputs = inputs + "<|im_start|>user\n"
        return self._generate(inputs)
        # for new_text in self._stream_generate(input_ids):
        #     yield new_text

    def generate_response(self, messages):
        assert messages[-1]["role"] == "user"
        inputs = self.tokenizer.apply_chat_template(
            messages,
            tokenize=False,
            add_generation_prompt=True
        )

        return self._generate(inputs)
        # for new_text in self._stream_generate(input_ids):
        #     yield new_text


    def _generate(self, inputs):
        # stream=False
        output = self.llm(
            inputs,
            max_tokens=20,
            temperature=0.7,
            stop=["<|im_end|>"]
        )
        output_text = output["choices"][0]["text"]
        return output_text



bot = Qwen2Simulator(r"E:\data_model\Qwen2-0.5B-Instruct")


if __name__ == "__main__":

    messages = [
        {"role": "system", "content": "you are a helpful assistant"},
        {"role": "user", "content": "What is the capital of France?"}
    ]
    output = bot.generate_response(messages)
    print(output)

    messages = [
        {"role": "system", "content": "you are a helpful assistant"},
        {"role": "user", "content": "hi, what your name"},
        {"role": "assistant", "content": "My name is Jordan"}
    ]
    output = bot.generate_query(messages)
    print(output)