# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """SEScore: a text generation evaluation metric """ import evaluate import datasets import comet from typing import Dict import torch from comet.encoders.base import Encoder from comet.encoders.bert import BERTEncoder from transformers import AutoModel, AutoTokenizer class robertaEncoder(BERTEncoder): def __init__(self, pretrained_model: str) -> None: super(Encoder, self).__init__() self.tokenizer = AutoTokenizer.from_pretrained(pretrained_model) self.model = AutoModel.from_pretrained( pretrained_model, add_pooling_layer=False ) self.model.encoder.output_hidden_states = True @classmethod def from_pretrained(cls, pretrained_model: str) -> Encoder: return robertaEncoder(pretrained_model) def forward( self, input_ids: torch.Tensor, attention_mask: torch.Tensor, **kwargs ) -> Dict[str, torch.Tensor]: last_hidden_states, _, all_layers = self.model( input_ids=input_ids, attention_mask=attention_mask, output_hidden_states=True, return_dict=False, ) return { "sentemb": last_hidden_states[:, 0, :], "wordemb": last_hidden_states, "all_layers": all_layers, "attention_mask": attention_mask, } # TODO: Add BibTeX citation _CITATION = """\ @inproceedings{xu-etal-2022-not, title={Not All Errors are Equal: Learning Text Generation Metrics using Stratified Error Synthesis}, author={Xu, Wenda and Tuan, Yi-lin and Lu, Yujie and Saxon, Michael and Li, Lei and Wang, William Yang}, booktitle ={Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing}, month={dec}, year={2022}, url={https://arxiv.org/abs/2210.05035} } """ _DESCRIPTION = """\ SEScore is an evaluation metric that trys to compute an overall score to measure text generation quality. """ _KWARGS_DESCRIPTION = """ Calculates how good are predictions given some references Args: predictions: list of candidate outputs references: list of references Returns: {"mean_score": mean_score, "scores": scores} Examples: >>> import evaluate >>> sescore = evaluate.load("xu1998hz/sescore") >>> score = sescore.compute( references=['sescore is a simple but effective next-generation text evaluation metric'], predictions=['sescore is simple effective text evaluation metric for next generation'] ) """ # TODO: Define external resources urls if needed BAD_WORDS_URL = "http://url/to/external/resource/bad_words.txt" @evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) class SEScore(evaluate.Metric): """SEScore""" def _info(self): # TODO: Specifies the evaluate.EvaluationModuleInfo object return evaluate.MetricInfo( # This is the description that will appear on the modules page. module_type="metric", description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, # This defines the format of each prediction and reference features=datasets.Features({ 'predictions': datasets.Value("string", id="sequence"), 'references': datasets.Value("string", id="sequence"), }), # Homepage of the module for documentation homepage="http://module.homepage", # Additional links to the codebase or references codebase_urls=["http://github.com/path/to/codebase/of/new_module"], reference_urls=["http://path.to.reference.url/new_module"] ) def _download_and_prepare(self, dl_manager): """download SEScore checkpoints to compute the scores""" # Download SEScore checkpoint from comet import load_from_checkpoint import os from huggingface_hub import snapshot_download # initialize roberta into str2encoder comet.encoders.str2encoder['RoBERTa'] = robertaEncoder destination = snapshot_download(repo_id="xu1998hz/sescore_english_coco", revision="main") self.scorer = load_from_checkpoint(f'{destination}/checkpoint/caption.ckpt') def _compute(self, predictions, references, gpus=None, progress_bar=False): if gpus is None: gpus = 1 if torch.cuda.is_available() else 0 data = {"src": references, "mt": predictions} data = [dict(zip(data, t)) for t in zip(*data.values())] scores, mean_score = self.scorer.predict(data, gpus=gpus, progress_bar=progress_bar) return {"mean_score": mean_score, "scores": scores}