File size: 13,024 Bytes
03b392c
 
 
 
 
300b021
03b392c
 
 
 
 
 
 
 
 
 
 
 
 
 
300b021
 
 
 
 
 
 
df70adb
300b021
 
 
 
 
 
03b392c
 
 
 
 
300b021
 
03b392c
 
 
300b021
 
 
 
 
03b392c
 
 
 
 
300b021
03b392c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce43b93
03b392c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
300b021
03b392c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
300b021
03b392c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
import numpy as np
import cv2


def crop_and_scaled_imgs(imgs):
    PAD = 5
    # use the last image to find the bounding box of the non-white area and the transformation parameters
    # and then apply the transformation to all images


    img = imgs[-1]
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    # Threshold the image to create a binary mask
    _, binary_mask = cv2.threshold(gray, 240, 255, cv2.THRESH_BINARY_INV)

    # Find the coordinates of non-zero pixels
    coords = cv2.findNonZero(binary_mask)

    # Get the bounding box of the non-zero pixels
    x, y, w, h = cv2.boundingRect(coords)
    x = max(0, x-PAD)
    y = max(0, y-PAD)
    x_end = min(img.shape[1], x+w+2*PAD)
    y_end = min(img.shape[0], y+h+2*PAD)
    w = x_end - x
    h = y_end - y

    SIZE = 400
    # Calculate the position to center the ROI in the SIZExSIZE image
    start_x = max(0, (SIZE - w) // 2)
    start_y = max(0, (SIZE - h) // 2)

    # Create a new SIZExSIZE rgb images
    new_imgs = [np.ones((SIZE, SIZE, 3), dtype=np.uint8) * 255 for _ in range(len(imgs))]
    for i in range(len(imgs)):
        # Extract the ROI (region of interest) of the non-white area
        roi = imgs[i][y:y+h, x:x+w]
        # If the ROI is larger than 256x256, resize it

        if w > SIZE or h > SIZE:
            scale = min(SIZE / w, SIZE / h)
            new_w = int(w * scale)
            new_h = int(h * scale)
            roi = cv2.resize(roi, (new_w, new_h), interpolation=cv2.INTER_AREA)
        else:
            new_w = w
            new_h = h



        # new_imgs[i] = np.ones((256, 256), dtype=np.uint8) * 255
        # centered_img = np.ones((256, 256), dtype=np.uint8) * 255

        # Place the ROI in the centered position
        new_imgs[i][start_y:start_y+new_h, start_x:start_x+new_w] = roi
    
    return new_imgs


HALF_INF = 63
INF = 126
EPS_DIST = 1/20
EPS_ANGLE = 2.86
SCALE = 15

MOVE_SPEED = 25
ROTATE_SPEED = 30
FPS = 24

class Turtle:
    def __init__(self, canvas_size=(2000, 2000)):
        self.x = canvas_size[0] // 2 
        self.y = canvas_size[1] // 2 
        self.heading = 0
        self.canvas = np.ones((canvas_size[1], canvas_size[0], 3), dtype=np.uint8) * 255
        self.is_down = True
        self.time_since_last_frame = 0
        self.frames = [self.canvas.copy()]


    def forward(self, dist):
        # print('st', self.x, self.y)
        # self.forward_step(dist * SCALE)
        # print('ed', self.x, self.y)
        # return
        dist = dist * SCALE
        sign = 1 if dist > 0 else -1
        abs_dist = abs(dist)
        if self.time_since_last_frame + abs_dist / MOVE_SPEED >= 1:
            dist1 = (1 - self.time_since_last_frame) * MOVE_SPEED
            self.forward_step(dist1 * sign)
            self.save_frame_with_turtle()
            self.time_since_last_frame = 0 
            # for loop to step forward
            num_steps = int((abs_dist - dist1) / MOVE_SPEED)
            for _ in range(num_steps):
                self.forward_step(MOVE_SPEED * sign)
                self.save_frame_with_turtle()
            last_abs_dist = abs_dist - dist1 - num_steps * MOVE_SPEED
            if last_abs_dist >= MOVE_SPEED:
                self.forward_step(MOVE_SPEED * sign)
                self.save_frame_with_turtle()
                last_abs_dist -= MOVE_SPEED
            self.forward_step(last_abs_dist * sign)
            self.time_since_last_frame = last_abs_dist / MOVE_SPEED
        else:
            self.forward_step(abs_dist * sign)
            # self.time_since_last_frame += abs_dist / MOVE_SPEED
            # if self.time_since_last_frame >= 1:
            #     self.time_since_last_frame = 0

    def forward_step(self, dist):
        # print('step', dist)
        if dist == 0:
            return
        x0, y0 = self.x, self.y
        x1 = (x0 + dist * np.cos(self.heading))
        y1 = (y0 - dist * np.sin(self.heading))
        if self.is_down:
            cv2.line(self.canvas, (int(np.rint(x0)), int(np.rint(y0))), (int(np.rint(x1)), int(np.rint(y1))), (0, 0, 0), 3)
        self.x, self.y = x1, y1
        self.time_since_last_frame += abs(dist) / MOVE_SPEED
        # self.frames.append(self.canvas.copy())
        # self.save_frame_with_turtle()
        # print(self.x, self.y)

    def save_frame_with_turtle(self):
        # save the current frame to frames buffer
        # also plot a red triangle to represent the turtle pointing to the current direction

        # draw the turtle
        x, y = self.x, self.y
        canvas_copy = self.canvas.copy()
        triangle_size = 10
        x0 = int(np.rint(x + triangle_size * np.cos(self.heading)))
        y0 = int(np.rint(y - triangle_size * np.sin(self.heading)))
        x1 = int(np.rint(x + triangle_size * np.cos(self.heading + 2 * np.pi / 3)))
        y1 = int(np.rint(y - triangle_size * np.sin(self.heading + 2 * np.pi / 3)))
        x2 = int(np.rint(x + triangle_size * np.cos(self.heading - 2 * np.pi / 3)))
        y2 = int(np.rint(y - triangle_size * np.sin(self.heading - 2 * np.pi / 3)))
        x3 = int(np.rint(x - 0.25 * triangle_size * np.cos(self.heading)))
        y3 = int(np.rint(y + 0.25 * triangle_size * np.sin(self.heading)))
        # fill the triangle
        cv2.fillPoly(canvas_copy, [np.array([(x0, y0), (x1, y1), (x3, y3), (x2, y2)], dtype=np.int32)], (0, 0, 255))

        self.frames.append(canvas_copy)



    def left(self, angle):
        # print('angel', angle)
        # print('ast', self.heading)
        # self.heading += angle * np.pi / 180
        self.turn_to(angle)
        # print('aed', self.heading)

    def right(self, angle):
        # print('angel', angle)
        # print('ast', self.heading)
        # self.heading -= angle * np.pi / 180
        self.turn_to(-angle)
        # print('aed', self.heading)

    def turn_to(self, angle):
        abs_angle = abs(angle)
        sign = 1 if angle > 0 else -1
        if self.time_since_last_frame + abs(angle) / ROTATE_SPEED > 1:
            angle1 = (1 - self.time_since_last_frame) * ROTATE_SPEED
            self.turn_to_step(angle1 * sign)
            self.save_frame_with_turtle()
            self.time_since_last_frame = 0
            num_steps = int((abs_angle - angle1) / ROTATE_SPEED)
            for _ in range(num_steps):
                self.turn_to_step(ROTATE_SPEED * sign)
                self.save_frame_with_turtle()
            last_abs_angle = abs_angle - angle1 - num_steps * ROTATE_SPEED
            if last_abs_angle >= ROTATE_SPEED:
                self.turn_to_step(ROTATE_SPEED * sign)
                self.save_frame_with_turtle()
                last_abs_angle -= ROTATE_SPEED
            self.turn_to_step(last_abs_angle * sign)
            self.time_since_last_frame = last_abs_angle / ROTATE_SPEED
        else:
            self.turn_to_step(abs_angle * sign)
            # self.time_since_last_frame += abs_angle / ROTATE_SPEED

    def turn_to_step(self, angle):
        # print('turn step', angle)
        self.heading += angle * np.pi / 180
        self.time_since_last_frame += abs(angle) / ROTATE_SPEED

    def penup(self):
        self.is_down = False

    def pendown(self):
        self.is_down = True

    def save(self, path):
        if path:
            cv2.imwrite(path, self.canvas)
        return self.canvas
    
    def save_gif(self, path):
        import imageio.v3 as iio
        frames_rgb = [cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) for frame in self.frames]
        print(f'number of frames: {len(frames_rgb)}')
        frames_rgb.extend(FPS*2 * [frames_rgb[-1]])

        frames_rgb = crop_and_scaled_imgs(frames_rgb)
        # iio.imwrite(path, np.stack(frames_rgb), fps=30, plugin='pillow')
        return iio.imwrite('<bytes>', np.stack(frames_rgb), fps=FPS, loop=0, plugin='pillow', format='gif')


    class _TurtleState:
        def __init__(self, turtle):
            self.turtle = turtle
            self.position = None
            self.heading = None
            self.pen_status = None

        def __enter__(self):
            self.position = (self.turtle.x, self.turtle.y)
            self.heading = self.turtle.heading
            self.pen_status = self.turtle.is_down
            return self

        def __exit__(self, exc_type, exc_val, exc_tb):
            self.turtle.penup()
            self.turtle.x, self.turtle.y = self.position
            self.turtle.heading = self.heading
            if self.pen_status:
                self.turtle.pendown()

if __name__ == "__main__":
    turtle = Turtle()

    def forward(dist):
        turtle.forward(dist)

    def left(angle):
        turtle.left(angle)

    def right(angle):
        turtle.right(angle)

    def penup():
        turtle.penup()

    def pendown():
        turtle.pendown()

    def save(path):
        turtle.save(path)

    def fork_state():
        """
        Clone the current state of the turtle.

        Usage:
        with clone_state():
            forward(100)
            left(90)
            forward(100)
        """
        return turtle._TurtleState(turtle)

    # Example usage
    def example_plot():
        forward(5)

        with fork_state():
            forward(10)
            left(90)
            forward(10)
            with fork_state():
                right(90)
                forward(20)
                left(90)
                forward(10)
            left(90)
            forward(10)

        right(90)
        forward(50)
        save("test2.png")
        return turtle.frames

    def plot2():
        for j in range(2):
            forward(2)
            left(0.0)
            for i in range(4):
                forward(2)
                left(90)
            forward(0)
            left(180.0)
            forward(2)
            left(180.0)
        FINAL_IMAGE = turtle.save("")

    def plot3():
        frames = []
        frames.append(np.array(turtle.save("")))
        for j in range(2):
            forward(2)
            frames.append(np.array(turtle.save("")))
            left(0.0)
            for i in range(4):
                forward(2)
                left(90)
                frames.append(np.array(turtle.save("")))
            forward(0)
            left(180.0)
            forward(2)
            left(180.0)
            frames.append(np.array(turtle.save("")))
        
        return frames

    def make_gif(frames, filename):
        import imageio
        frames_rgb = [cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) for frame in frames]
        imageio.mimsave(filename, frames_rgb, fps=30)

    def make_gif2(frames, filename):
        import imageio.v3 as iio
        frames_rgb = [cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) for frame in frames]
        print(f'number of frames: {len(frames_rgb)}')
        iio.imwrite(filename, np.stack(frames_rgb), fps=30, plugin='pillow')
    
    def make_gif3(frames, filename):
        from moviepy.editor import ImageSequenceClip
        clip = ImageSequenceClip(list(frames), fps=20)
        clip.write_gif(filename, fps=20)

    def make_gif4(frames, filename):
        from array2gif import write_gif
        write_gif(frames, filename, fps=20)

    def make_gif5(frames, filename):
        from PIL import Image
        frames_rgb = [cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) for frame in frames]
        images = [Image.fromarray(frame) for frame in frames_rgb]
        images[0].save(filename, save_all=True, append_images=images[1:], duration=100, loop=0)



    def plot4():
        # the following program draws a treelike pattern
        import random

        def draw_tree(level, length, angle):
            if level == 0:
                return
            else:
                forward(length)
                left(angle)
                draw_tree(level-1, length*0.7, angle*0.8)
                right(angle*2)
                draw_tree(level-1, length*0.7, angle*0.8)
                left(angle)
                forward(-length)

        random.seed(0)  # Comment this line to change the randomness
        for _ in range(7):  # Adjust the number to control the density
            draw_tree(5, 5, 30)
            forward(0)
            left(random.randint(0, 360))
        turtle.save("test3.png")
        return turtle.frames

    def plot5():
        for i in range(7):
            with fork_state():
                for j in range(4):
                    forward(3*i)
                    left(90.0)
        return turtle.frames


    # make_gif2(plot5(), "test.gif")
    frames = plot5()
    # frames = [cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) for frame in frames]
    # breakpoint()
    # from moviepy.editor import ImageClip, concatenate_videoclips
    # clips = [ImageClip(frame).set_duration(1/24) for frame in frames]
    # concat_clip = concatenate_videoclips(clips, method="compose")
    # concat_clip.write_videofile("test.mp4", fps=24)



    img_bytes_string = turtle.save_gif("")
    # turtle.save('test3.png')
    with open("test5.gif", "wb") as f:
        f.write(img_bytes_string)

    


    # example_plot()
    # plot2()