Spaces:
Sleeping
Sleeping
File size: 13,230 Bytes
03b392c 300b021 03b392c 300b021 df70adb 300b021 03b392c 300b021 03b392c 300b021 03b392c 300b021 03b392c 9768ed0 03b392c 300b021 03b392c d99193a 03b392c 300b021 03b392c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 |
import numpy as np
import cv2
def crop_and_scaled_imgs(imgs):
PAD = 5
# use the last image to find the bounding box of the non-white area and the transformation parameters
# and then apply the transformation to all images
img = imgs[-1]
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# Threshold the image to create a binary mask
_, binary_mask = cv2.threshold(gray, 240, 255, cv2.THRESH_BINARY_INV)
# Find the coordinates of non-zero pixels
coords = cv2.findNonZero(binary_mask)
# Get the bounding box of the non-zero pixels
x, y, w, h = cv2.boundingRect(coords)
x = max(0, x-PAD)
y = max(0, y-PAD)
x_end = min(img.shape[1], x+w+2*PAD)
y_end = min(img.shape[0], y+h+2*PAD)
w = x_end - x
h = y_end - y
SIZE = 400
# Calculate the position to center the ROI in the SIZExSIZE image
start_x = max(0, (SIZE - w) // 2)
start_y = max(0, (SIZE - h) // 2)
# Create a new SIZExSIZE rgb images
new_imgs = [np.ones((SIZE, SIZE, 3), dtype=np.uint8) * 255 for _ in range(len(imgs))]
for i in range(len(imgs)):
# Extract the ROI (region of interest) of the non-white area
roi = imgs[i][y:y+h, x:x+w]
# If the ROI is larger than 256x256, resize it
if w > SIZE or h > SIZE:
scale = min(SIZE / w, SIZE / h)
new_w = int(w * scale)
new_h = int(h * scale)
roi = cv2.resize(roi, (new_w, new_h), interpolation=cv2.INTER_AREA)
else:
new_w = w
new_h = h
# new_imgs[i] = np.ones((256, 256), dtype=np.uint8) * 255
# centered_img = np.ones((256, 256), dtype=np.uint8) * 255
# Place the ROI in the centered position
new_imgs[i][start_y:start_y+new_h, start_x:start_x+new_w] = roi
return new_imgs
HALF_INF = 63
INF = 126
EPS_DIST = 1/20
EPS_ANGLE = 2.86
SCALE = 15
MOVE_SPEED = 25
ROTATE_SPEED = 30
FPS = 24
class Turtle:
def __init__(self, canvas_size=(1000, 1000)):
self.x = canvas_size[0] // 2
self.y = canvas_size[1] // 2
self.heading = 0
self.canvas = np.ones((canvas_size[1], canvas_size[0], 3), dtype=np.uint8) * 255
self.is_down = True
self.time_since_last_frame = 0
self.frames = [self.canvas.copy()]
def forward(self, dist):
# print('st', self.x, self.y)
# self.forward_step(dist * SCALE)
# print('ed', self.x, self.y)
# return
dist = dist * SCALE
sign = 1 if dist > 0 else -1
abs_dist = abs(dist)
if self.time_since_last_frame + abs_dist / MOVE_SPEED >= 1:
dist1 = (1 - self.time_since_last_frame) * MOVE_SPEED
self.forward_step(dist1 * sign)
self.save_frame_with_turtle()
self.time_since_last_frame = 0
# for loop to step forward
num_steps = int((abs_dist - dist1) / MOVE_SPEED)
for _ in range(num_steps):
self.forward_step(MOVE_SPEED * sign)
self.save_frame_with_turtle()
last_abs_dist = abs_dist - dist1 - num_steps * MOVE_SPEED
if last_abs_dist >= MOVE_SPEED:
self.forward_step(MOVE_SPEED * sign)
self.save_frame_with_turtle()
last_abs_dist -= MOVE_SPEED
self.forward_step(last_abs_dist * sign)
self.time_since_last_frame = last_abs_dist / MOVE_SPEED
else:
self.forward_step(abs_dist * sign)
# self.time_since_last_frame += abs_dist / MOVE_SPEED
# if self.time_since_last_frame >= 1:
# self.time_since_last_frame = 0
def forward_step(self, dist):
# print('step', dist)
if dist == 0:
return
x0, y0 = self.x, self.y
x1 = (x0 + dist * np.cos(self.heading))
y1 = (y0 - dist * np.sin(self.heading))
if self.is_down:
cv2.line(self.canvas, (int(np.rint(x0)), int(np.rint(y0))), (int(np.rint(x1)), int(np.rint(y1))), (0, 0, 0), 3)
self.x, self.y = x1, y1
self.time_since_last_frame += abs(dist) / MOVE_SPEED
# self.frames.append(self.canvas.copy())
# self.save_frame_with_turtle()
# print(self.x, self.y)
def save_frame_with_turtle(self):
# save the current frame to frames buffer
# also plot a red triangle to represent the turtle pointing to the current direction
# draw the turtle
x, y = self.x, self.y
canvas_copy = self.canvas.copy()
triangle_size = 10
x0 = int(np.rint(x + triangle_size * np.cos(self.heading)))
y0 = int(np.rint(y - triangle_size * np.sin(self.heading)))
x1 = int(np.rint(x + triangle_size * np.cos(self.heading + 2 * np.pi / 3)))
y1 = int(np.rint(y - triangle_size * np.sin(self.heading + 2 * np.pi / 3)))
x2 = int(np.rint(x + triangle_size * np.cos(self.heading - 2 * np.pi / 3)))
y2 = int(np.rint(y - triangle_size * np.sin(self.heading - 2 * np.pi / 3)))
x3 = int(np.rint(x - 0.25 * triangle_size * np.cos(self.heading)))
y3 = int(np.rint(y + 0.25 * triangle_size * np.sin(self.heading)))
# fill the triangle
cv2.fillPoly(canvas_copy, [np.array([(x0, y0), (x1, y1), (x3, y3), (x2, y2)], dtype=np.int32)], (0, 0, 255))
self.frames.append(canvas_copy)
def left(self, angle):
# print('angel', angle)
# print('ast', self.heading)
# self.heading += angle * np.pi / 180
self.turn_to(angle)
# print('aed', self.heading)
def right(self, angle):
# print('angel', angle)
# print('ast', self.heading)
# self.heading -= angle * np.pi / 180
self.turn_to(-angle)
# print('aed', self.heading)
def turn_to(self, angle):
abs_angle = abs(angle)
sign = 1 if angle > 0 else -1
if self.time_since_last_frame + abs(angle) / ROTATE_SPEED > 1:
angle1 = (1 - self.time_since_last_frame) * ROTATE_SPEED
self.turn_to_step(angle1 * sign)
self.save_frame_with_turtle()
self.time_since_last_frame = 0
num_steps = int((abs_angle - angle1) / ROTATE_SPEED)
for _ in range(num_steps):
self.turn_to_step(ROTATE_SPEED * sign)
self.save_frame_with_turtle()
last_abs_angle = abs_angle - angle1 - num_steps * ROTATE_SPEED
if last_abs_angle >= ROTATE_SPEED:
self.turn_to_step(ROTATE_SPEED * sign)
self.save_frame_with_turtle()
last_abs_angle -= ROTATE_SPEED
self.turn_to_step(last_abs_angle * sign)
self.time_since_last_frame = last_abs_angle / ROTATE_SPEED
else:
self.turn_to_step(abs_angle * sign)
# self.time_since_last_frame += abs_angle / ROTATE_SPEED
def turn_to_step(self, angle):
# print('turn step', angle)
self.heading += angle * np.pi / 180
self.time_since_last_frame += abs(angle) / ROTATE_SPEED
def penup(self):
self.is_down = False
def pendown(self):
self.is_down = True
def save(self, path):
if path:
cv2.imwrite(path, self.canvas)
return self.canvas
def save_gif(self, path):
import imageio.v3 as iio
frames_rgb = [cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) for frame in self.frames]
print(f'number of frames: {len(frames_rgb)}')
last = frames_rgb[-1]
if len(frames_rgb)>=1000:
skip_ratio = len(frames_rgb)//1000
frames_rgb = frames_rgb[0::skip_ratio]
frames_rgb.extend(FPS*2 * [last])
print(f'number of frames: {len(frames_rgb)}')
frames_rgb = crop_and_scaled_imgs(frames_rgb)
# iio.imwrite(path, np.stack(frames_rgb), fps=30, plugin='pillow')
return iio.imwrite('<bytes>', np.stack(frames_rgb), fps=FPS, loop=0, plugin='pillow', format='gif')
class _TurtleState:
def __init__(self, turtle):
self.turtle = turtle
self.position = None
self.heading = None
self.pen_status = None
def __enter__(self):
self.position = (self.turtle.x, self.turtle.y)
self.heading = self.turtle.heading
self.pen_status = self.turtle.is_down
return self
def __exit__(self, exc_type, exc_val, exc_tb):
self.turtle.penup()
self.turtle.x, self.turtle.y = self.position
self.turtle.heading = self.heading
if self.pen_status:
self.turtle.pendown()
if __name__ == "__main__":
turtle = Turtle()
def forward(dist):
turtle.forward(dist)
def left(angle):
turtle.left(angle)
def right(angle):
turtle.right(angle)
def penup():
turtle.penup()
def pendown():
turtle.pendown()
def save(path):
turtle.save(path)
def fork_state():
"""
Clone the current state of the turtle.
Usage:
with clone_state():
forward(100)
left(90)
forward(100)
"""
return turtle._TurtleState(turtle)
# Example usage
def example_plot():
forward(5)
with fork_state():
forward(10)
left(90)
forward(10)
with fork_state():
right(90)
forward(20)
left(90)
forward(10)
left(90)
forward(10)
right(90)
forward(50)
save("test2.png")
return turtle.frames
def plot2():
for j in range(2):
forward(2)
left(0.0)
for i in range(4):
forward(2)
left(90)
forward(0)
left(180.0)
forward(2)
left(180.0)
FINAL_IMAGE = turtle.save("")
def plot3():
frames = []
frames.append(np.array(turtle.save("")))
for j in range(2):
forward(2)
frames.append(np.array(turtle.save("")))
left(0.0)
for i in range(4):
forward(2)
left(90)
frames.append(np.array(turtle.save("")))
forward(0)
left(180.0)
forward(2)
left(180.0)
frames.append(np.array(turtle.save("")))
return frames
def make_gif(frames, filename):
import imageio
frames_rgb = [cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) for frame in frames]
imageio.mimsave(filename, frames_rgb, fps=30)
def make_gif2(frames, filename):
import imageio.v3 as iio
frames_rgb = [cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) for frame in frames]
print(f'number of frames: {len(frames_rgb)}')
iio.imwrite(filename, np.stack(frames_rgb), fps=30, plugin='pillow')
def make_gif3(frames, filename):
from moviepy.editor import ImageSequenceClip
clip = ImageSequenceClip(list(frames), fps=20)
clip.write_gif(filename, fps=20)
def make_gif4(frames, filename):
from array2gif import write_gif
write_gif(frames, filename, fps=20)
def make_gif5(frames, filename):
from PIL import Image
frames_rgb = [cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) for frame in frames]
images = [Image.fromarray(frame) for frame in frames_rgb]
images[0].save(filename, save_all=True, append_images=images[1:], duration=100, loop=0)
def plot4():
# the following program draws a treelike pattern
import random
def draw_tree(level, length, angle):
if level == 0:
return
else:
forward(length)
left(angle)
draw_tree(level-1, length*0.7, angle*0.8)
right(angle*2)
draw_tree(level-1, length*0.7, angle*0.8)
left(angle)
forward(-length)
random.seed(0) # Comment this line to change the randomness
for _ in range(7): # Adjust the number to control the density
draw_tree(5, 5, 30)
forward(0)
left(random.randint(0, 360))
turtle.save("test3.png")
return turtle.frames
def plot5():
for i in range(7):
with fork_state():
for j in range(4):
forward(3*i)
left(90.0)
return turtle.frames
# make_gif2(plot5(), "test.gif")
frames = plot5()
# frames = [cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) for frame in frames]
# breakpoint()
# from moviepy.editor import ImageClip, concatenate_videoclips
# clips = [ImageClip(frame).set_duration(1/24) for frame in frames]
# concat_clip = concatenate_videoclips(clips, method="compose")
# concat_clip.write_videofile("test.mp4", fps=24)
img_bytes_string = turtle.save_gif("")
# turtle.save('test3.png')
with open("test5.gif", "wb") as f:
f.write(img_bytes_string)
# example_plot()
# plot2() |