uw-ct-seg / ct_seg.py
xuhw20's picture
Upload folder using huggingface_hub
94de731 verified
raw
history blame
12.3 kB
# --------------------------------------------------------
# BiomedSeg
# Copyright (c) 2022 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Written by Yu Gu ([email protected]), Theo Zhao ([email protected])
# --------------------------------------------------------
import os
import sys
this_file_dir = os.path.dirname(os.path.abspath(__file__))
sys.path.append(os.path.join(this_file_dir, "../ct_seg"))
import json
import warnings
import PIL
from PIL import Image
from typing import Any, Callable, Dict, List, Optional, Tuple
import monai
import cv2
import math
import gradio as gr
import torch
import argparse
import imageio
import numpy as np
import scipy
from torchvision import transforms
from models import dinov2_vitl_transunet
from class_dict import class_dict, dataset_class
from transforms import _MEAN, _STD
from monai import transforms as monai_transforms
from scipy.ndimage import label
id2label = {v: k for k, v in class_dict.items()}
np.random.seed(0)
id2color = {k: list(np.random.choice(range(256), size=3)) for k,v in id2label.items()}
def clean_mask(X):
"""
Cleans the mask for labels 1 and 2 by keeping only the largest connected component for each label.
Parameters:
X (numpy.ndarray): Volumetric mask of shape [N, 1, W, H] with values 0 (background), 1, or 2.
Returns:
numpy.ndarray: Cleaned volumetric mask with the same shape as X.
"""
# Extract the volume data (assuming N is the depth dimension)
if X.ndim == 4:
volume = X[:, 0, :, :] # Shape: [N, W, H]
else:
volume = X
for label_value in [1, 2, 10]:
# Create a binary mask for the current label
mask = (volume == label_value)
if not np.any(mask):
continue # Skip if the label is not present
# Define connectivity for 3D connected components
structure = np.ones((3, 3, 3), dtype=int)
# Label connected components
labeled_mask, num_features = label(mask, structure=structure)
if num_features == 0:
continue # No connected components found
# Compute sizes of all connected components
component_sizes = np.bincount(labeled_mask.ravel())
component_sizes[0] = 0 # Ignore the background
# Find the label of the largest connected component
largest_component_label = component_sizes.argmax()
# Create a mask for the largest connected component
largest_component_mask = (labeled_mask == largest_component_label)
# Remove all other components of the current label
volume[mask] = 0 # Set all pixels of the current label to background
volume[largest_component_mask] = label_value # Restore the largest component
# Update the original mask
if X.ndim == 4:
X[:, 0, :, :] = volume
else:
X = volume
return X
def parse_option():
parser = argparse.ArgumentParser('SEEM Demo', add_help=False)
parser.add_argument('--model_path', default="ckpt/model_19.pth", metavar="FILE", help='path to model file')
# parser.add_argument('--model_path', default="ckpt/uw_seg_heart.pth", metavar="FILE", help='path to model file')
cfg = parser.parse_args()
return cfg
'''
build args
'''
cfg = parse_option()
pretrained_pth = cfg.model_path
def load_tif_images(file_path):
vol = imageio.imread(file_path)
if np.max(vol) <= 1:
vol = vol * 255
return vol
def overlay_image_with_mask(image, segmentation_map, path='test.png', ax=None):
color_seg = np.zeros((segmentation_map.shape[0], segmentation_map.shape[1], 3), dtype=np.uint8) # height, width, 3
for label, color in id2color.items():
color_seg[segmentation_map == label, :] = color
# Show image + mask
img = np.array(image) * 0.5 + color_seg * 0.5
img = img.astype(np.uint8)
return img
def resize_volume(vol, size, max_frames, nearest_neighbor=False):
W, H, F = vol.shape
zoom_rate = size / W
vol_reshape = scipy.ndimage.zoom(
vol, (zoom_rate, zoom_rate, zoom_rate), order=3 if not nearest_neighbor else 0
)
resizeW, resizeH, resizeF = vol_reshape.shape
if resizeF > max_frames:
vol_reshape = vol_reshape[:, :, :max_frames]
resizeF = max_frames
else:
resized_max_fr = int(math.ceil(max_frames * zoom_rate))
vol_reshape = np.concatenate([vol_reshape, np.zeros((resizeW, resizeH, resized_max_fr - resizeF))], axis=-1)
return vol_reshape, resizeF, zoom_rate
val_transform = monai_transforms.Compose([monai_transforms.Resized(keys=['image'], spatial_size=(256, 256), mode=['bilinear'])])
def process_volume(vol: np.ndarray, keep_frames: Callable=lambda x: x > 0.025):
initial_resize = monai.transforms.ResizeWithPadOrCrop((512, 512))
transform = monai.transforms.CropForeground(keys=["pixel_values"], source_key="pixel_values", return_coords=True)
crop_vol, start_coords, end_coords = transform(vol)
keep_frames = np.where(keep_frames(np.mean(np.mean(crop_vol, axis=-1), axis=-1)))[0]
crop_vol = crop_vol[keep_frames]
W, H, F = crop_vol.shape
proc_vol = cv2.equalizeHist(crop_vol.reshape(W, -1).astype(np.uint8)).reshape(W, H, F)
proc_vol = initial_resize(proc_vol).detach().cpu().numpy().transpose((1, 2, 0))
proc_vol, max_fr = resize_volume(proc_vol, 256, max_frames=512)[:2]
images = []
for i in range(proc_vol.shape[2]):
image = torch.from_numpy(proc_vol[:, :, i]).unsqueeze(0)
image_transformed = val_transform({"image": image})["image"]
images.append(image_transformed)
images = torch.stack(images)
if images.max() > 1:
images = images / 255.0
# make the images three channels
images = images.repeat(1, 3, 1, 1)
for c in range(len(_MEAN)):
images[:, c, :, :] = (images[:, c, :, :] - _MEAN[c]) / _STD[c]
return images, max_fr
def untransform(img):
for c in range(len(_MEAN)):
img[c] = img[c] * _STD[c] + _MEAN[c]
if img.max() <= 1:
img = img * 255
return img.long()
def process_ct(ct_path: str):
vol = load_tif_images(ct_path)
images, frame_indices = process_volume(vol, keep_frames=lambda x: x > 0.025)
return images, frame_indices
# Ensure the example file is in the same directory or provide a relative path
examples = [["demo/CTseg_57_raw.tif"],
["demo/CTrec-don_1101.tif"]]
'''
build model
'''
class_names = dataset_class["uwseg"]
class_ids = [class_dict[class_name] for class_name in class_names]
model = dinov2_vitl_transunet(pretrained="", num_classes=len(class_dict), img_size=256)
state_dict = torch.load(pretrained_pth)
model.load_state_dict(state_dict)
model = model.cuda()
@torch.no_grad()
def inference(image_input):
if isinstance(image_input, str):
# image_input is a file path
file_path = image_input
else:
# image_input is a gr.File object
file_path = image_input.name
images, frame_indices = process_ct(file_path)
with torch.no_grad():
with torch.cuda.amp.autocast(dtype=torch.float16):
logits = model(images.cuda())
for j in range(len(class_dict)):
if j + 1 not in class_ids:
logits[:, j] = -1000
pred = torch.argmax(logits, dim=1) + 1
pred_mask = (torch.max(logits, dim=1)[0] > 0)
pred = pred_mask * pred
pred[frame_indices:] = 0
pred = torch.from_numpy(clean_mask(pred.cpu().numpy()))
volume_size = torch.sum(pred==2).item()
# 1 pixel = 1 mm^2, change to cm^3
volume_size = volume_size / 1000
# Compute the size of the segmented mask for each slice
sizes = pred.view(pred.shape[0], -1).sum(dim=1).cpu().numpy()
segmentation_results = []
raw_images = []
for i in range(len(images)):
images[i] = untransform(images[i])
raw_image = Image.fromarray(images[i].cpu().permute(1, 2, 0).numpy().astype(np.uint8))
raw_images.append(raw_image)
image_with_mask = overlay_image_with_mask(images[i].cpu().permute(1, 2, 0).numpy(), pred[i].squeeze(0).cpu().numpy())
image_with_mask = Image.fromarray(image_with_mask)
segmentation_results.append(image_with_mask)
initial_slice_index = 0
output_seg = segmentation_results[initial_slice_index]
output_raw = raw_images[initial_slice_index]
num_slices = len(segmentation_results)
initial_size = sizes[initial_slice_index]
return output_seg, output_raw, segmentation_results, raw_images, gr.update(maximum=num_slices - 1), sizes, f"Heart volume size: {volume_size} cm^3"
def update_slice(slice_index, segmentation_results_state, raw_images_state, sizes_text):
segmentation_results = segmentation_results_state
raw_images = raw_images_state
if segmentation_results is None or raw_images is None:
return None, None, ""
output_seg = segmentation_results[slice_index]
output_raw = raw_images[slice_index]
return output_seg, output_raw, size_text
def load_example(example):
image_file_path = example
return inference(image_file_path)
title = "CT Segmentation"
description = """
<div style="text-align: left; font-weight: bold;">
<br>
&#x1F32A Note: The current model is run on <span style="color:blue;">CT Segmentation (UW) </span> </p>
</div>
"""
article = "The Demo is Run on CT-Seg."
with gr.Blocks(theme=gr.themes.Soft(), title=title, css=".gradio-container { max-width: 1000px; margin: auto; }") as demo:
# add title
with gr.Row():
gr.Markdown(value="# <span style='color: #6366f1;'>UW CT segmentation</span>", elem_id="title")
with gr.Row():
with gr.Column(scale=2):
gr.Markdown(value="""
Welcome to CT Segmentation, an AI model that segments the thorax and heart out, and computes the volume sizes.
## How to Use:
0. **Explore Default Examples**: Click on images in the right panel.
1. **Upload Your Image**: something biomedical... but not your lovely pet!
Click **Segment** and see what CT Seg finds for you!
""",
elem_id="instructions")
gr.Markdown("## Step 1: Upload CT volume .tif image (Try examples on the right panel)")
with gr.Row(equal_height = True):
input_image = gr.File(label="Input Image", file_types=[".tif"])
# Initially, set the slider maximum to a default value, e.g., 0
slice_index_slider = gr.Slider(minimum=0, maximum=0, step=1, label="Slice Index")
with gr.Row(equal_height = True):
output_raw = gr.Image(label="Processed Image", interactive=False)
output_seg = gr.Image(label="Segmentation Results", interactive=False)
with gr.Row():
size_text = gr.Textbox(label="Heart volume Size", interactive=False)
with gr.Row():
button = gr.Button("Segment", interactive=True, variant='primary')
with gr.Column(scale=0.5):
gr.Markdown("## Click Default Examples")
# Initialize state variables
segmentation_results_state = gr.State()
raw_images_state = gr.State()
sizes_state = gr.State()
gr.Examples(
examples=examples,
inputs=[input_image],
outputs=[output_seg, output_raw, segmentation_results_state, raw_images_state, slice_index_slider, sizes_state, size_text],
fn=load_example,
cache_examples=False,
examples_per_page=1,
run_on_click=True
)
# Set up the button click
button.click(
fn=inference,
inputs=[input_image],
outputs=[output_seg, output_raw, segmentation_results_state, raw_images_state, slice_index_slider, sizes_state, size_text]
)
# Set up the slider change
slice_index_slider.change(
fn=update_slice,
inputs=[slice_index_slider, segmentation_results_state, raw_images_state, size_text],
outputs=[output_seg, output_raw, size_text]
)
if __name__ == "__main__":
demo.queue().launch(share=True)