from typing import Iterator model_id = 'xuqinyang/baichuan-13b-chat-ggml-int4' from huggingface_hub import snapshot_download snapshot_download(model_id, local_dir="./") from llama_cpp import Llama self.llm = Llama(model_path="./ggml-model-q4_0.bin", n_ctx=4096,seed=-1,n_threads=4) def run(message: str, chat_history: list[tuple[str, str]], system_prompt: str, max_new_tokens: int = 1024, temperature: float = 0.8, top_p: float = 0.95, top_k: int = 50) -> Iterator[str]: history = [] for i in chat_history: history.append({"role": "user", "content": i[0]}) history.append({"role": "assistant", "content": i[1]}) for response in self.llm.create_chat_completion(messages,stream=True,max_tokens=-1,temperature=0.3,top_k=5,top_p=0.85,repeat_penalty=1.1): if "content" in response["choices"][0]["delta"]: yield response["choices"][0]["delta"]["content"]