File size: 25,813 Bytes
357a956 9791f0c deacdbd 9791f0c deacdbd aed6a9f deacdbd 9791f0c ac04d4c 9791f0c ac04d4c aed6a9f ac04d4c 9791f0c 9f3e0f7 9791f0c ac04d4c 9791f0c ac04d4c 719f946 ac04d4c 719f946 9791f0c ac04d4c 9791f0c ac04d4c 9791f0c deacdbd 9791f0c 9f3e0f7 9791f0c 719f946 9791f0c ac04d4c 9791f0c 9f3e0f7 9791f0c aed6a9f 9791f0c aed6a9f 9791f0c aed6a9f 9791f0c aed6a9f 9791f0c aed6a9f 9791f0c 9f3e0f7 aed6a9f 9f3e0f7 9791f0c aed6a9f 9791f0c aed6a9f 9791f0c 5c53556 9f3e0f7 5c53556 9791f0c 5c53556 9791f0c 5c53556 9791f0c 5c53556 9791f0c 5c53556 9791f0c 5c53556 9791f0c 5c53556 9791f0c 5c53556 9791f0c deacdbd 5c53556 9791f0c 5c53556 9791f0c 5c53556 9791f0c deacdbd 9791f0c deacdbd 9791f0c deacdbd 9791f0c 5c53556 9791f0c 5c53556 9791f0c 5c53556 9791f0c 5c53556 9791f0c deacdbd 9791f0c 9f3e0f7 aed6a9f deacdbd 9f3e0f7 deacdbd 9791f0c ac04d4c aed6a9f 9791f0c 5c53556 9791f0c 9f3e0f7 9791f0c 7458be0 9791f0c affd6ff 9791f0c 9b4534c 9791f0c deacdbd aed6a9f 9791f0c 7458be0 9791f0c 9b4534c 9791f0c 9b4534c 9791f0c 9b4534c 9791f0c deacdbd 9f3e0f7 deacdbd 9791f0c 9f3e0f7 9791f0c deacdbd 9791f0c deacdbd 0b0eb0d 9f3e0f7 deacdbd 9791f0c deacdbd aed6a9f 9791f0c deacdbd 9791f0c f39bfde 9791f0c deacdbd 9f3e0f7 deacdbd aed6a9f deacdbd 9f3e0f7 deacdbd 9f3e0f7 deacdbd 9f3e0f7 deacdbd 9f3e0f7 deacdbd 9f3e0f7 deacdbd 9f3e0f7 deacdbd 9f3e0f7 deacdbd 9f3e0f7 deacdbd 9f3e0f7 deacdbd aed6a9f deacdbd aed6a9f deacdbd 9f3e0f7 deacdbd 9791f0c 9f3e0f7 9791f0c deacdbd 9791f0c deacdbd 9b4534c 9791f0c 9f3e0f7 aed6a9f 9b4534c 9791f0c 9b4534c 9791f0c 357a956 0b0eb0d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 |
import gradio as gr
import pandas as pd
# col=['Layer number', 'Hidden size', 'FFN Hidden size', 'Sequence length', 'Head number', 'Group number',
# 'dp', 'tp', 'pp', 'cp', 'GPU numbers', 'Batch size', 'FP8', 'Model parameters', 'Model_states', 'Activation', 'Total']
col=['L', 'H', 'FFN', 'S', 'A', 'G',
'DP', 'TP', 'PP', 'CP', 'GPUs', 'B', 'FP8', 'Model parameters (B)', 'Model states (GB)', 'Activation (GB)', 'Total (GB)']
abbr = """
<div align="center">
> **Abbreviations of symbols:**
|Abbr|Full name|Abbr|Full name|Abbr|Full name|Abbr|Full name|Abbr|Full name|Abbr|Full name|
|---|---|---|---|---|---|---|---|---|---|---|---|
|L|Layer number|H|Hidden size|FFN|FFN Hidden size|S|Sequence length|A|Head number|G|Group number|
</div>
"""
def Get_GigaByte(memory):
return memory / 1024**3
def Get_BillionParameter(parameter):
return parameter / 1000**3
# model states:
def Compute_Parameters_input(seq_length, hidden_size, vocab_size, act_func, tp):
num_parameters_word_embedding = hidden_size * vocab_size / tp
# position embedding
if act_func == "LLaMA":
num_parameters_position_embedding = 0
else:
num_parameters_position_embedding = seq_length * hidden_size / tp
return num_parameters_word_embedding + num_parameters_position_embedding
def Compute_Parameters_output(hidden_size, vocab_size, is_tie_word_embedding, act_func, tp):
# layernorm: h/2h
if act_func == "LLaMA":
num_parameters_output_layernorm = hidden_size # RMSNorm
else:
num_parameters_output_layernorm = 2 * hidden_size # LayerNorm
if is_tie_word_embedding == "True":
num_parameters_output_embedding = 0 # due to sharedWordEmbedding
else:
num_parameters_output_embedding = hidden_size * vocab_size / tp
return num_parameters_output_layernorm + num_parameters_output_embedding
def Compute_Parameters_attention(hidden_size, kv_hidden_size, is_bias, act_func, tp):
# attention:
# layernorm: h/2h
if act_func == "LLaMA":
num_parameters_attention = hidden_size # RMSNorm
else:
num_parameters_attention = 2 * hidden_size # LayerNorm
# QKV weight: 3h*h/tp, bias: 3h/tp
# output linear weight: h*h/tp, bias: h
num_parameters_attention_Q_weight = hidden_size * hidden_size / tp
num_parameters_attention_KV_weight = 2 * kv_hidden_size * hidden_size / tp
num_parameters_attention_Linear_weight = hidden_size * hidden_size / tp
num_parameters_attention += num_parameters_attention_Q_weight + num_parameters_attention_KV_weight + num_parameters_attention_Linear_weight
if is_bias == "True":
num_parameters_attention += (hidden_size + 2 * kv_hidden_size) / tp + hidden_size
return num_parameters_attention
def Compute_Parameters_mlp(hidden_size, ffn_size, is_bias, act_func, tp):
# MLP:
# layernorm: h/2h
if act_func == "LLaMA":
num_parameters_mlp = hidden_size # RMSNorm
else:
num_parameters_mlp = 2 * hidden_size # LayerNorm
# mlp1 weight: h*ffn/tp, bias: ffn/tp
# mlp2 weight: ffn*h/tp, bias: h
if act_func == "LLaMA":
num_parameters_mlp += hidden_size * ffn_size * 3 / tp
if is_bias == "True":
num_parameters_mlp += ffn_size * 2 / tp + hidden_size
else:
num_parameters_mlp += hidden_size * ffn_size * 2 / tp
if is_bias == "True":
num_parameters_mlp += ffn_size / tp + hidden_size
return num_parameters_mlp
def Compute_Parameters(seq_length, vocab_size, layer_num, hidden_size, ffn_size, is_group_query, group_query_num, is_bias, is_tie_word_embedding, act_func, head_num, tp, pp):
if is_group_query == "False":
group_query_num = head_num
kv_hidden_size = hidden_size / head_num * group_query_num
# input part
num_parameters_input = Compute_Parameters_input(seq_length, hidden_size, vocab_size, act_func, tp)
# middle layers part
num_parameters_attention = Compute_Parameters_attention(hidden_size, kv_hidden_size, is_bias, act_func, tp)
num_parameters_mlp = Compute_Parameters_mlp(hidden_size, ffn_size, is_bias, act_func, tp)
num_parameters_in_single_layer = num_parameters_attention + num_parameters_mlp
num_parameters_in_total_layers = num_parameters_in_single_layer * layer_num / pp
# output part
parameters_output = Compute_Parameters_output(hidden_size, vocab_size, is_tie_word_embedding, act_func, tp)
if pp == 1:
num_parameters_total = (
num_parameters_input
+ num_parameters_in_total_layers
+ parameters_output # num_parameters_output_layernorm
)
else:
num_parameters_total = (
num_parameters_input
+ num_parameters_in_total_layers
)
return num_parameters_total
def Compute_Weight(numParametersTotal, precision, is_fp8, is_fp8_init):
weight_memory = 0
if precision == "FP32":
weight_memory = 4 * numParametersTotal
else:
weight_memory = 2 * numParametersTotal
if is_fp8 == "True" and is_fp8_init == "False":
weight_memory += 2 * numParametersTotal
return weight_memory
def Compute_Gradient(numParametersTotal, g_ty):
if g_ty == "FP32":
gradient_memory = 4 * numParametersTotal
elif g_ty =="BF16":
gradient_memory = 2 * numParametersTotal
return gradient_memory
def Compute_Optimizer_states(numParametersTotal, opt_func, o_ty, is_dist_opt, dp, cp):
if o_ty == "FP32":
optimizer_memory = 4 * 2 * numParametersTotal
elif o_ty =="BF16":
optimizer_memory = 2 * 2 * numParametersTotal
if is_dist_opt == "True":
optimizer_memory = optimizer_memory / (dp * cp)
# for SGD, we have no optimizer states
if opt_func == "SGD":
optimizer_memory = 0
return optimizer_memory
def Compute_Master_weight(numParametersTotal, precision, is_dist_opt, dp, cp):
if precision == "BF16":
master_weight_memory = 4 * numParametersTotal
else:
master_weight_memory = 0
if is_dist_opt == "True":
master_weight_memory = master_weight_memory / (dp * cp)
return master_weight_memory
def Compute_Model_states(seq_length, vocab_size, layer_num, hidden_size, ffn_size, head_num, is_group_query, group_query_num, is_bias, is_tie_word_embedding, act_func,
dp, tp, pp, cp, is_dist_opt, precision, is_fp8, is_fp8_init, g_ty, opt_func, o_ty):
numParametersTotal = Compute_Parameters(seq_length, vocab_size, layer_num, hidden_size, ffn_size, is_group_query, group_query_num, is_bias, is_tie_word_embedding, act_func, head_num, tp, pp)
weight_memory = Compute_Weight(numParametersTotal, precision, is_fp8, is_fp8_init)
gradient_memory = Compute_Gradient(numParametersTotal, g_ty)
optimizer_memory = Compute_Optimizer_states(numParametersTotal, opt_func, o_ty, is_dist_opt, dp, cp)
master_weight_memory = Compute_Master_weight(numParametersTotal, precision, is_dist_opt, dp, cp)
return numParametersTotal, weight_memory, gradient_memory, optimizer_memory, master_weight_memory, \
weight_memory + gradient_memory + optimizer_memory + master_weight_memory
# activation memory:
def compute_activation_memory_attention(training_dtype, gemm_dtype, seq_length, b, hidden_size, kv_hidden_size, is_sp, tp):
# LN 2bsh
activation_mem_attn_ln = seq_length * b * hidden_size * training_dtype
if is_sp == "False":
activation_mem_attn_ln *= tp
# attention input X, qkv 2bsh/1bsh
activation_mem_attn_qkv = seq_length * b * hidden_size * gemm_dtype
if is_sp == "False":
activation_mem_attn_qkv *= tp
# attention q 2bsh
activation_mem_attn_q = seq_length * b * hidden_size * training_dtype
# attention k and v 4bsh
activation_mem_attn_kv = seq_length * b * kv_hidden_size * training_dtype * 2
# attention proj input 2bsh/1bsh
activation_mem_attn_proj = seq_length * b * hidden_size * gemm_dtype
# dropout bsh
activation_mem_attn_dropout = seq_length * b * hidden_size
if is_sp == "False":
activation_mem_attn_dropout *= tp
# bf16: 2+2+2+4+2+1=13bsh
# fp8: 2+1+2+4+1+1=11bsh
activation_memory_attn = (
activation_mem_attn_ln
+ activation_mem_attn_qkv
+ activation_mem_attn_q
+ activation_mem_attn_kv
+ activation_mem_attn_proj
+ activation_mem_attn_dropout
)
return activation_memory_attn
def compute_activation_memory_mlp(training_dtype, gemm_dtype, seq_length, b, hidden_size, ffn_size, act_func, is_sp, tp):
# LN 2bsh
activation_mem_mlp_ln = seq_length * b * hidden_size * training_dtype
if is_sp == "False":
activation_mem_mlp_ln *= tp
# FC1 2bsh/1bsh
activation_mem_mlp_fc1 = seq_length * b * hidden_size * gemm_dtype
if is_sp == "False":
activation_mem_mlp_fc1 *= tp
# Act 8bsh
if act_func == "LLaMA":
activation_mem_mlp_act = seq_length * b * ffn_size * training_dtype * 2
else:
activation_mem_mlp_act = seq_length * b * ffn_size * training_dtype
# FC2 8bsh/4bsh
activation_mem_mlp_fc2 = seq_length * b * ffn_size * gemm_dtype
# dropout bsh
activation_mem_mlp_dropout = seq_length * b * hidden_size
if is_sp == "False":
activation_mem_mlp_dropout *= tp
# bf16: 2+2+8+8+1=21
# fp8: 2+1+8+4+1=16
activation_memory_mlp = (
activation_mem_mlp_ln
+ activation_mem_mlp_fc1
+ activation_mem_mlp_act
+ activation_mem_mlp_fc2
+ activation_mem_mlp_dropout
)
return activation_memory_mlp
def compute_activation_memory_input(seq_length, b, hidden_size, pp):
# embedding + Dropout
return 8 * seq_length * b * pp + seq_length * b * hidden_size * pp
def compute_activation_memory_output(seq_length, b, hidden_size, vocab_size):
# Inputs to output layer and CE loss(bf16, fp32 * 2).
return 2 * seq_length * b * hidden_size + (2 + 4 + 4) * seq_length * b * vocab_size
def compute_activation_memory_pp(activation_memory, vp, pp, num_microbatches):
# Multiply by interleaved PP memory factor.
if vp > 0:
interleaved_schedule_memory_penalty = 1 + (pp - 1) / (pp * vp)
activation_memory *= interleaved_schedule_memory_penalty
# If using non-interleaved schedule, number of microbatches in pipeline can be less than pp_size,
# so discount accordingly.
if vp == 0 and pp > 1:
if num_microbatches > 1:
activation_memory *= min(1, num_microbatches / pp)
return activation_memory
def compute_activation_memory(vocab_size, seq_length, layer_num, b, b_global, head_num, hidden_size, ffn_size, act_func, precision, is_fp8, is_sp, is_group_query, group_query_num, tp, pp, dp, cp, vp):
# Using formula in Table 2 of https://arxiv.org/pdf/2205.05198.pdf.
# We are trying to compute the maximum activation footprint, so all calculations in this function
# are for the first pipeline stage.
# activation dataType for Training
if precision == "FP32":
training_dtype = 4
else:
training_dtype = 2
# activation dataType for GEMM
if precision == "FP32":
gemm_dtype = 4
elif is_fp8 == "False":
gemm_dtype = 2
else:
gemm_dtype = 1
# kv_hidden_size
if is_group_query == "False":
group_query_num = head_num
kv_hidden_size = hidden_size / head_num * group_query_num
activation_memory_attn = compute_activation_memory_attention(training_dtype, gemm_dtype, seq_length, b, hidden_size, kv_hidden_size, is_sp, tp)
activation_memory_mlp = compute_activation_memory_mlp(training_dtype, gemm_dtype, seq_length, b, hidden_size, ffn_size, act_func, is_sp, tp)
activation_memory = activation_memory_attn + activation_memory_mlp
activation_memory *= layer_num
# Now add activation memory required for input embeddings, last LayerNorm and output layer.
# Input to embedding (pp_size microbatches in flight).
activation_memory_input = compute_activation_memory_input(seq_length, b, hidden_size, pp)
activation_memory += activation_memory_input
# get num_microbatches
num_microbatches = b_global / b / dp / cp
activation_memory = compute_activation_memory_pp(activation_memory, vp, pp, num_microbatches)
if pp == 1:
# Inputs to output layer and CE loss(fp32).
activation_memory_output = compute_activation_memory_output(seq_length, b, hidden_size, vocab_size)
activation_memory += activation_memory_output
elif pp > 1:
# Sendrecv memory
activation_memory += seq_length * b * hidden_size * 2
# Activation memory is partitioned by TP size due to tensor and sequence model parallelism.
return activation_memory / tp / cp
# compute_btn.click.function
def Compute_ALL_Model_memory(vocab_size, layer_num, hidden_size, ffn_size, seq_length, head_num, is_group_query, group_query_num, is_bias, is_tie_word_embedding, act_func,
dp, tp, pp, cp, is_sp, vp, is_dist_opt, b, b_global, precision, is_fp8, is_fp8_init, g_ty, opt_func, o_ty, record_df, count):
# data type trans
if is_group_query == "True":
group_query_num = int(group_query_num)
else:
group_query_num = head_num
# check input
[result, Error_message] = check_input(dp, tp, pp, cp, hidden_size, head_num, layer_num, seq_length, vp, b, b_global)
if result == False:
return Error_message, record_df, count
# get model states
numParameters, weight_memory, gradient_memory, optimizer_memory, master_weight_memory, model_states_memory = Compute_Model_states(seq_length, vocab_size, layer_num, hidden_size,
ffn_size, head_num, is_group_query, group_query_num, is_bias, is_tie_word_embedding, act_func, dp, tp, pp, cp, is_dist_opt, precision, is_fp8, is_fp8_init, g_ty, opt_func, o_ty)
# get activation memory
activation_memory = compute_activation_memory(vocab_size, seq_length, layer_num, b, b_global, head_num, hidden_size, ffn_size, act_func, precision, is_fp8, is_sp, is_group_query, group_query_num, tp, pp, dp, cp, vp)
# get model parameters
numParametersTotal = Compute_Parameters(seq_length, vocab_size, layer_num, hidden_size, ffn_size, is_group_query, group_query_num, is_bias, is_tie_word_embedding, act_func, head_num, 1, 1)
# get gpu number
gpu_num = dp * tp * pp * cp
# get B/GB
numParametersTotal = round(Get_BillionParameter(numParametersTotal), 3)
numParameters = round(Get_BillionParameter(numParameters), 3)
model_states_memory = round(Get_GigaByte(model_states_memory), 3)
activation_memory = round(Get_GigaByte(activation_memory), 3)
other_memory = 5
Total = round(model_states_memory + activation_memory + other_memory, 3)
# record
new_row = pd.DataFrame([[layer_num, hidden_size, ffn_size, seq_length, head_num, group_query_num, dp, tp, pp, cp, gpu_num, b, is_fp8,
numParametersTotal, model_states_memory, activation_memory, Total]],
columns=col)
if count == 1:
record_df = new_row
else:
record_df = record_df._append(new_row, ignore_index=True)
count = count + 1
# return str(gpu_num), str(model_states) + " GB", str(activation) + " GB", str(total) + " GB", table_data
return f"""
GPU numbers = {str(gpu_num)}, \n
Model parameters = {str(numParametersTotal)} B, \n
Model parameters on each device = {str(numParameters)} B, \n
Model_states = Weight + Gradient + Optimizer = {str(model_states_memory)} GB, \n
Activation = {str(activation_memory)} GB, \n
Other memory = 5 GB, \n
Total memory consumption = {str(Total)} GB \n
""", record_df, count
def generate_csv(record_df):
# 将 DataFrame 保存为 CSV 文件
csv_filename = "data.csv"
record_df.to_csv(csv_filename, index=False)
# 返回 CSV 文件路径
return csv_filename
# formula string
formula = r"""
> **Note**🔑: In this formula, we assume LLM training with FP8 training.
> 1. LlaMA-family Model.
> 2. Interleaved pipeline.
> 3. bias = False.
> 4. SP = True.
<div align="center">
<img src=file/T1.jpg width=50%/>
</div>
$$
{Total\ Model\ parameters} =
HV + (4H^2 + 3H \times FFN + 2H) \times L + H
$$
***
<div align="center">
<img src=file/ms.png width=40%/>
</div>
$$
{Model\ states} =
(6 + \frac{12}{dp \times cp}) \times
(\frac{(\frac{4H^2 + 3H \times FFN}{tp} + 2H) \times L}{pp} + \frac{HV}{tp})
$$
$$
{Activation} =
(1 + \frac{pp-1}{pp \times vp}) \times
\frac{(8BS + BSH) \times pp + (15BSH + 5BS \times FFN) \times L}{tp \times cp}
$$
***
$$
\\begin{gather}
{GPU\ numbers} = tp \times pp \times dp \times cp\\\\
{Total\ memory\ consumption} = {Model\ states} + Activation
\\end{gather}
$$
"""
def check_tp(tp, head_num):
if head_num % tp == 0:
return True
else:
return False
def check_pp(pp, layer_num):
if layer_num % pp == 0:
return True
else:
return False
def check_cp(cp, seq_length):
if seq_length % cp == 0:
return True
else:
return False
def check_hidden(hidden_size, head_num):
if hidden_size % head_num == 0:
return True
else:
return False
def check_b_global(b_global, b, dp, cp):
if b_global % (b * dp * cp) == 0:
return True
else:
return False
def check_num_microbatch(layer_num, vp, pp, num_microbatches):
if vp > 0:
if layer_num % (pp * vp) == 0:
return True
else:
return False
if vp == 0 and pp > 1:
if num_microbatches > 1:
if num_microbatches % pp == 0:
return True
else:
return False
return True
def check_input(dp, tp, pp, cp, hidden_size, head_num, layer_num, seq_length, vp, b, b_global):
result = True
Error_message = ""
if check_tp(tp, head_num) == False:
result = False
Error_message += "Error message: Please reset Tensor parallelism or head_num, make head_num % tp = 0. \n"
if check_pp(pp, layer_num) == False:
result = False
Error_message += "Error message: Please reset Pipeline parallelism or layer_num, make layer_num % pp = 0. \n"
if check_cp(cp, seq_length) == False:
result = False
Error_message += "Error message: Please reset Context parallelism or seq_length, make seq_length % cp = 0. \n"
if check_hidden(hidden_size, head_num) == False:
result = False
Error_message += "Error message: Please reset hidden_size or head_num, make hidden_size % head_num = 0. \n"
if check_b_global(b_global, b, dp, cp) == False:
result = False
Error_message += "Error message: Please reset b_global or batch_size, make b_global % (batch_size * dp * cp) = 0. \n"
if check_num_microbatch(layer_num, vp, pp, b_global / b / dp / cp) == False:
result = False
Error_message += "Error message: Please reset b_global or batch_size or layer_num or Virtual Pipeline Size, make layer_num % (pp * vp) = 0, num_microbatches % pp = 0. \n"
return result, Error_message
with gr.Blocks() as demo:
with gr.Row():
# Text
gr.Markdown(
"""
<div style="text-align: center;">
<h1>GPU memory calculator 🌀</h1>
<p style="font-size:16px;">Here's a GPU memory calculator, it helps you to compute memory comsumption in LLM training. </p>
<p style="font-size:16px;">Note: Flash-attention is enabled by default. </p>
</div>
"""
)
with gr.Row():
with gr.Column():
# Input 1.[Model Parameters]
gr.Markdown(
"""
<h2>Model Parameters:</h2>
"""
)
with gr.Accordion("Model Parameters"):
# with gr.Row():
act_func = gr.Radio(["LLaMA", "GPT"], value="LLaMA", label="Model type", info="eg. LLaMa: SwiGLU, RoPE, RMSNorm") #, info="Action Function in MLP, whether to use GLU (Gated Linear Unit). [e.g \"True\" for LlaMA, \"False\" for GPT.]")
with gr.Row():
vocab_size = gr.Number(label="Vocab size (V)", value=32000)
layer_num = gr.Number(label="Layer number (L)", value=32)
with gr.Row():
hidden_size = gr.Number(label="Hidden size (H)", value=4096)
ffn_size = gr.Number(label="FFN Hidden size (FFN)", value=11008)
with gr.Row():
sequence_len = gr.Number(label="Sequence length (S)", value=2048)
head_num = gr.Number(label="Number of Attention Heads (A)", value=32)
with gr.Row():
is_group_query = gr.Radio(["True", "False"], value="False", label="Use Group Query Attention")
group_query_num = gr.Textbox(label="Number of Query Groups (G)", max_lines=1, value=None, interactive=False)
with gr.Row():
is_bias = gr.Radio(["True", "False"], value="False", label="Use Bias")
is_tie_word_embedding = gr.Radio(["True", "False"], value="False", label="Tie word embeddings")
# change editable function
def toggle_textbox_editable(radio_value):
# 根据 radio_value 的值来决定 textbox 是否可编辑
if radio_value == "True":
return gr.update(interactive=True, value="96")
else:
return gr.update(interactive=False, value="")
# 将 radio 组件的变化连接到函数
is_group_query.change(toggle_textbox_editable, inputs=is_group_query, outputs=group_query_num)
with gr.Column():
# Input 2.[Parallelism]
gr.Markdown(
"""
<h2>Parallelism config:</h2>
"""
)
with gr.Accordion("Parallelism config"):
# with gr.Row():
dp = gr.Number(label="Data parallelism (dp)", value=2)
tp = gr.Number(label="Tensor parallelism (tp)", value=2)
pp = gr.Number(label="Pipeline parallelism (pp)", value=2)
cp = gr.Number(label="Context parallelism (cp)", value=1)
# with gr.Row():
is_sp = gr.Radio(["True", "False"], value="True", label="Sequence parallelism")
vp = gr.Number(label="Virtual Pipeline Size (vp)")
is_dist_opt = gr.Radio(["True", "False"], value="True", label="Use Distributed Optimizer(Zero1)")
with gr.Column():
# Input 3.[Training Settings]
gr.Markdown(
"""
<h2>Training Config:</h2>
"""
)
with gr.Accordion("Training Config"):
# with gr.Row():
b = gr.Number(label="Micro Batch size (B)", value=4)
b_global = gr.Number(label="Global Batch size", value=64)
precision = gr.Dropdown(["FP32", "BF16"], value="BF16", label="Training precision")
with gr.Row():
is_fp8 = gr.Radio(["True", "False"], value="True", label="FP8 Training")
is_fp8_init = gr.Radio(["True", "False"], value="True", label="FP8 Initialization(will reduce memory)")
g_ty = gr.Dropdown(["FP32", "BF16"], value="FP32", label="Gradients Dtype")
with gr.Row():
opt_func = gr.Radio(["Adam", "SGD"], value="Adam", label="Optimizer function")
o_ty = gr.Dropdown(["FP32", "BF16"], value="FP32", label="Optimizer State Dtype")
compute_btn = gr.Button("Compute")
with gr.Tab("Output"):
with gr.Column():
# gr.Markdown(
# """
# <h1>Output Data:</h1>
# """
# )
output_text = gr.Textbox(
label="Compute result",
interactive=False,
)
with gr.Tab("Formula"):
formula = formula
gr.Markdown(
formula
, latex_delimiters=[{ "left": "$$", "right": "$$", "display": True }]
)
# gr.Markdown(abbr)
record_df = gr.Dataframe(
label="Record Table",
headers=col,
interactive=False
)
download_btn = gr.Button("Download")
count = gr.Number(label="Row count", value=1, visible=False)
compute_btn.click(
fn=Compute_ALL_Model_memory,
inputs=[vocab_size, layer_num, hidden_size, ffn_size, sequence_len, head_num, is_group_query, group_query_num, is_bias, is_tie_word_embedding, act_func,
dp, tp, pp, cp, is_sp, vp, is_dist_opt, b, b_global, precision, is_fp8, is_fp8_init, g_ty, opt_func, o_ty, record_df, count],
outputs=[output_text, record_df, count]
)
output_file=gr.File(label="When you click the download button, the downloaded form will be displayed here.")
# download func
download_btn.click(
fn=generate_csv,
inputs=record_df,
outputs=output_file
)
if __name__ == "__main__":
demo.launch(share=False, allowed_paths=["/"])
|