Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,66 +1,59 @@
|
|
|
|
1 |
import pandas as pd
|
2 |
import matplotlib.pyplot as plt
|
3 |
-
import gradio as gr
|
4 |
-
import tempfile
|
5 |
-
import warnings
|
6 |
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
-
|
10 |
-
plt.
|
11 |
-
plt.
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
-
|
14 |
-
# column1 = "身高"
|
15 |
-
# column2 = "心血管疾病"
|
16 |
-
# is_continuous = True
|
17 |
-
# bins = 5
|
18 |
-
# 读取数据
|
19 |
-
df = pd.read_csv(file_name)
|
20 |
-
data_x = df[column1]
|
21 |
-
data_y = df[column2]
|
22 |
-
# 自动判断column1的数据类型
|
23 |
-
if is_continuous:
|
24 |
-
# 如果是连续值,则进行分组
|
25 |
-
data_x = pd.qcut(data_x, q=bins, duplicates='drop')
|
26 |
-
else:
|
27 |
-
# 如果是离散值,则直接使用
|
28 |
-
pass
|
29 |
-
# 统计每个身高分段中不同心血管疾病类别的数量
|
30 |
-
counts = pd.crosstab(data_x, data_y)
|
31 |
-
# 绘制分段柱形图
|
32 |
-
counts.plot(kind='bar')
|
33 |
-
# 设置 x 轴刻度标签横向显示
|
34 |
-
plt.xticks(rotation=0)
|
35 |
-
plt.xlabel(column1, fontsize=12)
|
36 |
-
plt.ylabel(column2, fontsize=12)
|
37 |
-
# plt.legend(['不患病', '患病'])
|
38 |
-
plt.title(f'{column1}与{column2}的关系', fontsize=14)
|
39 |
-
# plt.show()
|
40 |
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
-
|
|
|
|
|
|
|
|
|
47 |
|
48 |
-
#
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
gr.Textbox(label="指定第1个数据列名称"),
|
54 |
-
gr.Textbox(label="指定第2个数据列名称"),
|
55 |
-
gr.Checkbox(label="第1列数据是连续值类型", default=False),
|
56 |
-
gr.Slider(3, 6, label="如果第1列是连续值,要分为几组"),
|
57 |
-
],
|
58 |
-
outputs=[
|
59 |
-
gr.Dataframe(type='pandas', label="数据表的前5行"),
|
60 |
-
gr.Image(type='filepath', label="柱形图")
|
61 |
-
],
|
62 |
-
title="数据分布可视化工具",
|
63 |
-
description="上传数据表格,指定列名称,查看特定数据列分布的可视化结果。"
|
64 |
-
)
|
65 |
|
66 |
-
iface.launch(share=True)
|
|
|
1 |
+
import gradio as gr
|
2 |
import pandas as pd
|
3 |
import matplotlib.pyplot as plt
|
|
|
|
|
|
|
4 |
|
5 |
+
def process_file(file):
|
6 |
+
# 读取CSV文件并创建DataFrame
|
7 |
+
df = pd.read_csv(file.name)
|
8 |
+
columns = df.columns.tolist()
|
9 |
+
print("文件已上传,表头为:", columns) # 调试信息
|
10 |
+
# 返回前5行数据,更新下拉列表选项,并使其他控件可见
|
11 |
+
return (df.head(),
|
12 |
+
gr.update(visible=True),
|
13 |
+
gr.update(choices=columns, visible=True),
|
14 |
+
gr.update(choices=columns, visible=True),
|
15 |
+
gr.update(visible=True))
|
16 |
+
|
17 |
+
def update_slider(choice):
|
18 |
+
print("选择框的值:", choice) # 调试信息
|
19 |
+
# 更新数轴控件的可见性
|
20 |
+
return gr.update(visible=choice == "是")
|
21 |
+
|
22 |
+
def generate_output(file, col1, col2, choice, number):
|
23 |
+
df = pd.read_csv(file.name)
|
24 |
+
filtered_data = df[[col1, col2]].dropna()
|
25 |
|
26 |
+
plt.figure(figsize=(10, 6))
|
27 |
+
plt.scatter(filtered_data[col1], filtered_data[col2])
|
28 |
+
plt.xlabel(col1)
|
29 |
+
plt.ylabel(col2)
|
30 |
+
plt.title(f'Scatter plot of {col1} vs {col2}')
|
31 |
+
|
32 |
+
image_path = 'output.png'
|
33 |
+
plt.savefig(image_path)
|
34 |
+
plt.close()
|
35 |
|
36 |
+
return filtered_data.head(), image_path
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
+
with gr.Blocks() as demo:
|
39 |
+
file_input = gr.File(label="上传CSV文件", file_types=["csv"])
|
40 |
+
df_display = gr.Dataframe(visible=False)
|
41 |
+
col1_dropdown = gr.Dropdown(label="选择列1", visible=False)
|
42 |
+
col2_dropdown = gr.Dropdown(label="选择列2", visible=False)
|
43 |
+
choice_radio = gr.Radio(["是", "否"], label="是否选择", visible=False)
|
44 |
+
slider = gr.Slider(minimum=2, maximum=7, step=1, label="选择数字", visible=False)
|
45 |
+
submit_button = gr.Button("提交")
|
46 |
+
output_image = gr.Image(visible=False)
|
47 |
|
48 |
+
# 文件上传后调用 process_file 函数
|
49 |
+
file_input.upload(process_file, inputs=file_input, outputs=[df_display, col1_dropdown, col2_dropdown, choice_radio])
|
50 |
+
|
51 |
+
# 选择框值改变时调用 update_slider 函数
|
52 |
+
choice_radio.change(update_slider, inputs=choice_radio, outputs=slider)
|
53 |
|
54 |
+
# 点击提交按钮时调用 generate_output 函数
|
55 |
+
submit_button.click(generate_output, inputs=[file_input, col1_dropdown, col2_dropdown, choice_radio, slider], outputs=[df_display, output_image])
|
56 |
+
|
57 |
+
demo.launch()
|
58 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
|