xywwww commited on
Commit
2c65d75
·
verified ·
1 Parent(s): a60b748

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +50 -0
app.py ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import random
3
+ import gradio as gr
4
+ from diffusers import StableDiffusionControlNetPipeline
5
+ from annotator.util import resize_image, HWC3
6
+
7
+ # Load the pipeline
8
+ pipe = StableDiffusionControlNetPipeline.from_pretrained("CompVis/stable-diffusion-v1-4").to("cuda")
9
+
10
+ def process(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, guess_mode, strength, scale, seed, eta, low_threshold, high_threshold):
11
+ with torch.no_grad():
12
+ img = resize_image(HWC3(input_image), image_resolution)
13
+
14
+ if seed == -1:
15
+ seed = random.randint(0, 65535)
16
+ generator = torch.manual_seed(seed)
17
+
18
+ # Generate images using the pipeline
19
+ images = pipe(prompt=prompt + ', ' + a_prompt, num_inference_steps=ddim_steps, guidance_scale=scale, generator=generator, num_images_per_prompt=num_samples).images
20
+
21
+ results = [np.array(image) for image in images]
22
+ return results
23
+
24
+ block = gr.Blocks().queue()
25
+ with block:
26
+ with gr.Row():
27
+ gr.Markdown("## Scene Diffusion with ControlNet")
28
+ with gr.Row():
29
+ with gr.Column():
30
+ input_image = gr.Image(source='upload', type="numpy")
31
+ prompt = gr.Textbox(label="Prompt")
32
+ a_prompt = gr.Textbox(label="Additional Prompt")
33
+ n_prompt = gr.Textbox(label="Negative Prompt")
34
+ num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1)
35
+ image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512, step=64)
36
+ ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=20, step=1)
37
+ guess_mode = gr.Checkbox(label='Guess Mode', value=False)
38
+ strength = gr.Slider(label="Strength", minimum=0.0, maximum=1.0, value=0.5, step=0.1)
39
+ scale = gr.Slider(label="Scale", minimum=0.1, maximum=30.0, value=10.0, step=0.1)
40
+ seed = gr.Slider(label="Seed", minimum=0, maximum=10000, value=42, step=1)
41
+ eta = gr.Slider(label="ETA", minimum=0.0, maximum=1.0, value=0.0, step=0.1)
42
+ low_threshold = gr.Slider(label="Canny Low Threshold", minimum=1, maximum=255, value=100, step=1)
43
+ high_threshold = gr.Slider(label="Canny High Threshold", minimum=1, maximum=255, value=200, step=1)
44
+ submit = gr.Button("Generate")
45
+ with gr.Column():
46
+ output_image = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2, height='auto')
47
+ submit.click(fn=process, inputs=[input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, guess_mode, strength, scale, seed, eta, low_threshold, high_threshold], outputs=output_image)
48
+
49
+ demo = block
50
+ demo.launch(share=True)