File size: 4,839 Bytes
089b3d5
 
5270826
206e6f2
089b3d5
7373e8c
089b3d5
 
358631e
089b3d5
 
168e3f1
84b8f07
61b9726
6190870
40d9df7
9bb64d1
 
089b3d5
 
 
f065c65
d0d9591
089b3d5
61b9726
 
 
089b3d5
 
 
 
 
9bb64d1
089b3d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61b9726
 
 
 
 
 
 
 
 
 
 
 
 
 
089b3d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40d9df7
61b9726
 
 
 
 
 
 
 
 
 
 
 
 
 
089b3d5
cdb768d
089b3d5
 
 
 
 
 
 
 
358631e
8f2d0ff
b3c885c
d0d9591
 
 
 
 
 
ffb6fc3
 
d0d9591
ffb6fc3
1acd420
a5233d6
b753a99
9bb64d1
ffb6fc3
358631e
9bb64d1
 
358631e
9bb64d1
b3c885c
5270826
b3c885c
cdb768d
089b3d5
 
 
 
 
 
 
 
 
 
b3c885c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
from fastapi import APIRouter, Depends
from fastapi.responses import StreamingResponse
from PIL import Image, ImageEnhance
from fastapi import HTTPException
import io
from io import BytesIO
import requests
import os
import base64
from dotenv import load_dotenv
from pydantic import BaseModel
from pymongo import MongoClient
from models import *
from huggingface_hub import InferenceClient
from fastapi import UploadFile, File
from fastapi.responses import JSONResponse, FileResponse
import uuid
from RyuzakiLib import GeminiLatest

class FluxAI(BaseModel):
    user_id: int
    args: str
    auto_enhancer: bool = False

class MistralAI(BaseModel):
    args: str

router = APIRouter()

load_dotenv()
MONGO_URL = os.environ["MONGO_URL"]
HUGGING_TOKEN = os.environ["HUGGING_TOKEN"]
GOOGLE_API_KEY = os.environ["GOOGLE_API_KEY"]

client_mongo = MongoClient(MONGO_URL)
db = client_mongo["tiktokbot"]
collection = db["users"]

async def schellwithflux(args):
    API_URL = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-schnell"
    headers = {"Authorization": f"Bearer {HUGGING_TOKEN}"}
    payload = {"inputs": args}
    response = requests.post(API_URL, headers=headers, json=payload)
    if response.status_code != 200:
        print(f"Error status {response.status_code}")
        return None
    return response.content

async def mistralai_post_message(message_str):
    client = InferenceClient(
        "mistralai/Mixtral-8x7B-Instruct-v0.1",
        token=HUGGING_TOKEN
    )
    output = ""
    for message in client.chat_completion(
        messages=[{"role": "user", "content": message_str}],
        max_tokens=500,
        stream=True
    ):
        output += message.choices[0].delta.content
    return output

def get_user_tokens_gpt(user_id):
    user = collection.find_one({"user_id": user_id})
    if not user:
        return 0
    return user.get("tokens", 0)

def deduct_tokens_gpt(user_id, amount):
    tokens = get_user_tokens_gpt(user_id)
    if tokens >= amount:
        collection.update_one(
            {"user_id": user_id},
            {"$inc": {"tokens": -amount}}
        )
        return True
    else:
        return False


@router.post("/akeno/mistralai", response_model=SuccessResponse, responses={422: {"model": SuccessResponse}})
async def mistralai_(payload: MistralAI):
        try:
            response = await mistralai_post_message(payload.args)
            return SuccessResponse(
                status="True",
                randydev={"message": response}
            )
        except Exception as e:
            return SuccessResponse(
                status="False",
                randydev={"error": f"An error occurred: {str(e)}"}
            )

@router.post("/akeno/fluxai", response_model=SuccessResponse, responses={422: {"model": SuccessResponse}})
async def fluxai_image(payload: FluxAI):
    if deduct_tokens_gpt(payload.user_id, amount=20):
        try:
            image_bytes = await schellwithflux(payload.args)
            if image_bytes is None:
                return SuccessResponse(
                    status="False",
                    randydev={"error": "Failed to generate an image"}
                )

            if payload.auto_enhancer:
                with Image.open(BytesIO(image_bytes)) as image:
                    enhancer = ImageEnhance.Sharpness(image)
                    image = enhancer.enhance(1.5)
                    enhancer = ImageEnhance.Contrast(image)
                    image = enhancer.enhance(1.2)
                    enhancer = ImageEnhance.Color(image)
                    image = enhancer.enhance(1.1)

                    enhanced_image_bytes = "akeno.jpg"
                    image.save(enhanced_image_bytes, format="JPEG", quality=95)
                    with open(enhanced_image_bytes, "rb") as image_file:
                        encoded_string = base64.b64encode(image_file.read())

                example_test = "Explain how this picture looks like."
                x = GeminiLatest(api_keys=GOOGLE_API_KEY)
                response = x.get_response_image(example_test, enhanced_image_bytes)
                
                return SuccessResponse(
                    status="True",
                    randydev={"image_data": encoded_string, "caption": response}
                )

            else:
                return StreamingResponse(BytesIO(image_bytes), media_type="image/jpeg")

        except Exception as e:
            return SuccessResponse(
                status="False",
                randydev={"error": f"An error occurred: {str(e)}"}
            )
    else:
        tokens = get_user_tokens_gpt(payload.user_id)
        return SuccessResponse(
            status="False",
            randydev={"error": f"Not enough tokens. Current tokens: {tokens}. Please support @xtdevs"}
        )