Spaces:
Running
Running
File size: 5,936 Bytes
089b3d5 5270826 206e6f2 089b3d5 6492eff 089b3d5 168e3f1 84b8f07 61b9726 cfcc4f8 9bb64d1 089b3d5 ab40556 f065c65 d0d9591 089b3d5 61b9726 089b3d5 9bb64d1 089b3d5 61b9726 089b3d5 40d9df7 cfcc4f8 61b9726 ab40556 089b3d5 2b4bb2f 089b3d5 ab40556 2b4bb2f ab40556 2b4bb2f 84127ab 2b4bb2f ab40556 2b4bb2f ab40556 2b4bb2f ab40556 089b3d5 ab40556 9bb64d1 ab40556 089b3d5 ab40556 089b3d5 ab40556 b3c885c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 |
from fastapi import APIRouter, Depends
from fastapi.responses import StreamingResponse
from PIL import Image, ImageEnhance
from fastapi import HTTPException
import io
import requests
import os
import base64
from dotenv import load_dotenv
from pydantic import BaseModel
from pymongo import MongoClient
from models import *
from huggingface_hub import InferenceClient
from fastapi import UploadFile
from fastapi.responses import JSONResponse
import uuid
from RyuzakiLib import GeminiLatest
class FluxAI(BaseModel):
user_id: int
api_key: str
args: str
auto_enhancer: bool = False
class MistralAI(BaseModel):
args: str
router = APIRouter()
load_dotenv()
MONGO_URL = os.environ["MONGO_URL"]
HUGGING_TOKEN = os.environ["HUGGING_TOKEN"]
GOOGLE_API_KEY = os.environ["GOOGLE_API_KEY"]
client_mongo = MongoClient(MONGO_URL)
db = client_mongo["tiktokbot"]
collection = db["users"]
async def schellwithflux(args):
API_URL = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-schnell"
headers = {"Authorization": f"Bearer {HUGGING_TOKEN}"}
payload = {"inputs": args}
response = requests.post(API_URL, headers=headers, json=payload)
if response.status_code != 200:
print(f"Error status {response.status_code}")
return None
return response.content
async def mistralai_post_message(message_str):
client = InferenceClient(
"mistralai/Mixtral-8x7B-Instruct-v0.1",
token=HUGGING_TOKEN
)
output = ""
for message in client.chat_completion(
messages=[{"role": "user", "content": message_str}],
max_tokens=500,
stream=True
):
output += message.choices[0].delta.content
return output
def get_user_tokens_gpt(user_id):
user = collection.find_one({"user_id": user_id})
if not user:
return 0
return user.get("tokens", 0)
def deduct_tokens_gpt(user_id, amount):
tokens = get_user_tokens_gpt(user_id)
if tokens >= amount:
collection.update_one(
{"user_id": user_id},
{"$inc": {"tokens": -amount}}
)
return True
else:
return False
@router.get("/akeno/gettoken")
async def get_token_with_flux(user_id: int):
tokens = get_user_tokens_gpt(user_id)
if tokens:
return SuccessResponse(
status="True",
randydev={"tokens": f"Current tokens: {tokens}."}
)
else:
return SuccessResponse(
status="False",
randydev={"tokens": f"Not enough tokens. Current tokens: {tokens}."}
)
@router.post("/akeno/mistralai", response_model=SuccessResponse, responses={422: {"model": SuccessResponse}})
async def mistralai_(payload: MistralAI):
try:
response = await mistralai_post_message(payload.args)
return SuccessResponse(
status="True",
randydev={"message": response}
)
except Exception as e:
return SuccessResponse(
status="False",
randydev={"error": f"An error occurred: {str(e)}"}
)
def get_all_api_keys():
user = collection.find({})
api_keys = []
for x in user:
api_key = x.get("ryuzaki_api_key")
if api_key:
api_keys.append(api_key)
return api_keys
@router.post("/akeno/fluxai", response_model=SuccessResponse, responses={422: {"model": SuccessResponse}})
async def fluxai_image(payload: FluxAI):
if deduct_tokens_gpt(payload.user_id, amount=20):
USERS_API_KEYS = get_all_api_keys()
if payload.api_key in USERS_API_KEYS:
try:
image_bytes = await schellwithflux(payload.args)
if image_bytes is None:
return SuccessResponse(
status="False",
randydev={"error": "Failed to generate an image"}
)
if payload.auto_enhancer:
with Image.open(io.BytesIO(image_bytes)) as image:
enhancer = ImageEnhance.Sharpness(image)
image = enhancer.enhance(1.5)
enhancer = ImageEnhance.Contrast(image)
image = enhancer.enhance(1.2)
enhancer = ImageEnhance.Color(image)
image = enhancer.enhance(1.1)
enhanced_image_bytes = "akeno.jpg"
image.save(enhanced_image_bytes, format="JPEG", quality=95)
with open(enhanced_image_bytes, "rb") as image_file:
encoded_string = base64.b64encode(image_file.read()).decode('utf-8')
example_test = "Accurately identify the baked good in the image and provide an appropriate and recipe consistent with your analysis."
x = GeminiLatest(api_keys=GOOGLE_API_KEY)
response = x.get_response_image(example_test, enhanced_image_bytes)
return SuccessResponse(
status="True",
randydev={"image_data": encoded_string, "caption": response}
)
else:
return StreamingResponse(io.BytesIO(image_bytes), media_type="image/jpeg")
except Exception as e:
return SuccessResponse(
status="False",
randydev={"error": f"An error occurred: {str(e)}"}
)
else:
return SuccessResponse(
status="False",
randydev={"error": f"Error required api_key"}
)
else:
tokens = get_user_tokens_gpt(payload.user_id)
return SuccessResponse(
status="False",
randydev={"error": f"Not enough tokens. Current tokens: {tokens} and required api_key."}
)
|