import os import requests from fastapi import APIRouter from pydantic import BaseModel from dotenv import load_dotenv from models import * class WhisperX(BaseModel): filename: str router = APIRouter() load_dotenv() HUGGING_TOKEN = os.environ["HUGGING_TOKEN"] async def whsiper_to_text(filename): if not os.path.isfile(filename): print(f"Error: File {filename} does not exist.") return None API_URL = "https://api-inference.huggingface.co/models/openai/whisper-large-v3" headers = {"Authorization": f"Bearer {HUGGING_TOKEN}"} with open(filename, "rb") as f: files = {'file': f} response = requests.post(API_URL, headers=headers, files=files) if response.status_code != 200: print(f"Error status {response.status_code}") return None return response.json() @router.post("/akeno/whsiper", response_model=SuccessResponse, responses={422: {"model": SuccessResponse}}) async def whsiper_new(payload: WhisperX): try: response_data = await whsiper_to_text(payload.filename) if response_data is None: return SuccessResponse( status="False", randydev={"error": f"Failed to whisper the filename '{payload.filename}'"} ) return SuccessResponse( status="True", randydev={"message": response_data.get("text")} ) except Exception as e: return SuccessResponse( status="False", randydev={"error": f"An error occurred: {str(e)}"} )