from fastapi import APIRouter, Depends from fastapi.responses import StreamingResponse from PIL import Image, ImageEnhance import io import requests import os from dotenv import load_dotenv from pydantic import BaseModel from pymongo import MongoClient from models import * class FluxAI(BaseModel): user_id: int args: str auto_enhancer: bool router = APIRouter() load_dotenv() MONGO_URL = os.environ["MONGO_URL"] HUGGING_TOKEN = os.environ["HUGGING_TOKEN"] client_mongo = MongoClient(MONGO_URL) db = client_mongo["tiktokbot"] collection = db["users"] async def schellwithflux(args): API_URL = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-schnell" headers = {"Authorization": f"Bearer {HUGGING_TOKEN}"} payload = {"inputs": args} response = requests.post(API_URL, headers=headers, json=payload) if response.status_code != 200: print(f"Error status {response.status_code}") return None return response.content def get_user_tokens_gpt(user_id): user = collection.find_one({"user_id": user_id}) if not user: return 0 return user.get("tokens", 0) def deduct_tokens_gpt(user_id, amount): tokens = get_user_tokens_gpt(user_id) if tokens >= amount: collection.update_one( {"user_id": user_id}, {"$inc": {"tokens": -amount}} ) return True else: return False @router.post("/akeno/fluxai", response_model=SuccessResponse, responses={422: {"model": SuccessResponse}}) async def fluxai_image(payload: FluxAI): if deduct_tokens_gpt(payload.user_id, amount=20): try: image_bytes = await schellwithflux(payload.args) if image_bytes is None: return SuccessResponse( status="False", randydev={"error": "Failed to generate an image"} ) if payload.enhancer: image = Image.open(io.BytesIO(image_bytes)) enhancer = ImageEnhance.Sharpness(image) image = enhancer.enhance(1.5) enhancer = ImageEnhance.Contrast(image) image = enhancer.enhance(1.2) enhancer = ImageEnhance.Color(image) image = enhancer.enhance(1.1) file_path = "response_image.jpg" image.save(file_path, quality=95) return StreamingResponse(file_path, media_type="image/jpeg") else: return StreamingResponse(io.BytesIO(image_bytes), media_type="image/jpeg") except Exception as e: return SuccessResponse( status="False", randydev={"error": f"An error occurred: {str(e)}"} ) else: tokens = get_user_tokens_gpt(payload.user_id) return SuccessResponse( status="False", randydev={"error": f"Not enough tokens. Current tokens: {tokens}. Please support @xtdevs"} )