Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from PIL import Image
|
3 |
+
from transformers import AutoModel, CLIPImageProcessor
|
4 |
+
import gradio as gr
|
5 |
+
|
6 |
+
# Load the model
|
7 |
+
model = AutoModel.from_pretrained(
|
8 |
+
'OpenGVLab/InternVL2_5-1B',
|
9 |
+
torch_dtype=torch.float32, # Use float32 for CPU compatibility
|
10 |
+
low_cpu_mem_usage=True,
|
11 |
+
trust_remote_code=True,
|
12 |
+
use_flash_attn=False # Disable Flash Attention
|
13 |
+
).eval() # Do not move to CUDA, force CPU execution
|
14 |
+
|
15 |
+
# Load the image processor
|
16 |
+
image_processor = CLIPImageProcessor.from_pretrained('OpenGVLab/InternVL2_5-1B')
|
17 |
+
|
18 |
+
# Define the function to process the image and generate outputs
|
19 |
+
def process_image(image):
|
20 |
+
try:
|
21 |
+
# Convert uploaded image to RGB
|
22 |
+
image = image.convert('RGB')
|
23 |
+
|
24 |
+
# Preprocess the image
|
25 |
+
pixel_values = image_processor(images=image, return_tensors='pt').pixel_values
|
26 |
+
|
27 |
+
# Run the model on CPU
|
28 |
+
outputs = model(pixel_values)
|
29 |
+
|
30 |
+
# Assuming the model returns embeddings or features
|
31 |
+
return f"Output Shape: {outputs.last_hidden_state.shape}"
|
32 |
+
except Exception as e:
|
33 |
+
return f"Error: {str(e)}"
|
34 |
+
|
35 |
+
# Create the Gradio interface
|
36 |
+
demo = gr.Interface(
|
37 |
+
fn=process_image, # Function to process the input
|
38 |
+
inputs=gr.Image(type="pil"), # Accepts images as input
|
39 |
+
outputs=gr.Textbox(label="Model Output"), # Displays model output
|
40 |
+
title="InternViT Demo",
|
41 |
+
description="Upload an image to process it using the InternViT model from OpenGVLab."
|
42 |
+
)
|
43 |
+
|
44 |
+
# Launch the demo
|
45 |
+
if __name__ == "__main__":
|
46 |
+
demo.launch(server_name="0.0.0.0", server_port=7860)
|