xzerus commited on
Commit
c39921f
·
verified ·
1 Parent(s): da591e5

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +13 -9
app.py CHANGED
@@ -3,14 +3,17 @@ from PIL import Image
3
  from transformers import AutoModel, CLIPImageProcessor
4
  import gradio as gr
5
 
 
 
 
6
  # Load the model
7
  model = AutoModel.from_pretrained(
8
  'OpenGVLab/InternVL2_5-1B',
9
- torch_dtype=torch.float32, # Use float32 for CPU compatibility
10
  low_cpu_mem_usage=True,
11
  trust_remote_code=True,
12
- use_flash_attn=False # Disable Flash Attention
13
- ).eval() # Do not move to CUDA, force CPU execution
14
 
15
  # Load the image processor
16
  image_processor = CLIPImageProcessor.from_pretrained('OpenGVLab/InternVL2_5-1B')
@@ -22,10 +25,11 @@ def process_image(image):
22
  image = image.convert('RGB')
23
 
24
  # Preprocess the image
25
- pixel_values = image_processor(images=image, return_tensors='pt').pixel_values
26
 
27
- # Run the model on CPU
28
- outputs = model(pixel_values)
 
29
 
30
  # Assuming the model returns embeddings or features
31
  return f"Output Shape: {outputs.last_hidden_state.shape}"
@@ -37,10 +41,10 @@ demo = gr.Interface(
37
  fn=process_image, # Function to process the input
38
  inputs=gr.Image(type="pil"), # Accepts images as input
39
  outputs=gr.Textbox(label="Model Output"), # Displays model output
40
- title="InternViT Demo",
41
- description="Upload an image to process it using the InternViT model from OpenGVLab."
42
  )
43
 
44
  # Launch the demo
45
  if __name__ == "__main__":
46
- demo.launch(server_name="0.0.0.0", server_port=7860)
 
3
  from transformers import AutoModel, CLIPImageProcessor
4
  import gradio as gr
5
 
6
+ # Force the use of GPU
7
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
8
+
9
  # Load the model
10
  model = AutoModel.from_pretrained(
11
  'OpenGVLab/InternVL2_5-1B',
12
+ torch_dtype=torch.float16, # Use float16 for GPU efficiency
13
  low_cpu_mem_usage=True,
14
  trust_remote_code=True,
15
+ use_flash_attn=True # Enable Flash Attention for improved performance
16
+ ).to(device).eval() # Explicitly move the model to GPU
17
 
18
  # Load the image processor
19
  image_processor = CLIPImageProcessor.from_pretrained('OpenGVLab/InternVL2_5-1B')
 
25
  image = image.convert('RGB')
26
 
27
  # Preprocess the image
28
+ pixel_values = image_processor(images=image, return_tensors='pt').pixel_values.to(device) # Ensure tensor is on GPU
29
 
30
+ # Run the model
31
+ with torch.no_grad(): # Disable gradient calculations for inference
32
+ outputs = model(pixel_values)
33
 
34
  # Assuming the model returns embeddings or features
35
  return f"Output Shape: {outputs.last_hidden_state.shape}"
 
41
  fn=process_image, # Function to process the input
42
  inputs=gr.Image(type="pil"), # Accepts images as input
43
  outputs=gr.Textbox(label="Model Output"), # Displays model output
44
+ title="InternVL2_5 Demo",
45
+ description="Upload an image to process it using the InternVL2_5-1B model from OpenGVLab."
46
  )
47
 
48
  # Launch the demo
49
  if __name__ == "__main__":
50
+ demo.launch(server_name="0.0.0.0", server_port=7860)