Update app.py
Browse files
app.py
CHANGED
@@ -3,14 +3,17 @@ from PIL import Image
|
|
3 |
from transformers import AutoModel, CLIPImageProcessor
|
4 |
import gradio as gr
|
5 |
|
|
|
|
|
|
|
6 |
# Load the model
|
7 |
model = AutoModel.from_pretrained(
|
8 |
'OpenGVLab/InternVL2_5-1B',
|
9 |
-
torch_dtype=torch.
|
10 |
low_cpu_mem_usage=True,
|
11 |
trust_remote_code=True,
|
12 |
-
use_flash_attn=
|
13 |
-
).eval() #
|
14 |
|
15 |
# Load the image processor
|
16 |
image_processor = CLIPImageProcessor.from_pretrained('OpenGVLab/InternVL2_5-1B')
|
@@ -22,10 +25,11 @@ def process_image(image):
|
|
22 |
image = image.convert('RGB')
|
23 |
|
24 |
# Preprocess the image
|
25 |
-
pixel_values = image_processor(images=image, return_tensors='pt').pixel_values
|
26 |
|
27 |
-
# Run the model
|
28 |
-
|
|
|
29 |
|
30 |
# Assuming the model returns embeddings or features
|
31 |
return f"Output Shape: {outputs.last_hidden_state.shape}"
|
@@ -37,10 +41,10 @@ demo = gr.Interface(
|
|
37 |
fn=process_image, # Function to process the input
|
38 |
inputs=gr.Image(type="pil"), # Accepts images as input
|
39 |
outputs=gr.Textbox(label="Model Output"), # Displays model output
|
40 |
-
title="
|
41 |
-
description="Upload an image to process it using the
|
42 |
)
|
43 |
|
44 |
# Launch the demo
|
45 |
if __name__ == "__main__":
|
46 |
-
demo.launch(server_name="0.0.0.0", server_port=7860)
|
|
|
3 |
from transformers import AutoModel, CLIPImageProcessor
|
4 |
import gradio as gr
|
5 |
|
6 |
+
# Force the use of GPU
|
7 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
8 |
+
|
9 |
# Load the model
|
10 |
model = AutoModel.from_pretrained(
|
11 |
'OpenGVLab/InternVL2_5-1B',
|
12 |
+
torch_dtype=torch.float16, # Use float16 for GPU efficiency
|
13 |
low_cpu_mem_usage=True,
|
14 |
trust_remote_code=True,
|
15 |
+
use_flash_attn=True # Enable Flash Attention for improved performance
|
16 |
+
).to(device).eval() # Explicitly move the model to GPU
|
17 |
|
18 |
# Load the image processor
|
19 |
image_processor = CLIPImageProcessor.from_pretrained('OpenGVLab/InternVL2_5-1B')
|
|
|
25 |
image = image.convert('RGB')
|
26 |
|
27 |
# Preprocess the image
|
28 |
+
pixel_values = image_processor(images=image, return_tensors='pt').pixel_values.to(device) # Ensure tensor is on GPU
|
29 |
|
30 |
+
# Run the model
|
31 |
+
with torch.no_grad(): # Disable gradient calculations for inference
|
32 |
+
outputs = model(pixel_values)
|
33 |
|
34 |
# Assuming the model returns embeddings or features
|
35 |
return f"Output Shape: {outputs.last_hidden_state.shape}"
|
|
|
41 |
fn=process_image, # Function to process the input
|
42 |
inputs=gr.Image(type="pil"), # Accepts images as input
|
43 |
outputs=gr.Textbox(label="Model Output"), # Displays model output
|
44 |
+
title="InternVL2_5 Demo",
|
45 |
+
description="Upload an image to process it using the InternVL2_5-1B model from OpenGVLab."
|
46 |
)
|
47 |
|
48 |
# Launch the demo
|
49 |
if __name__ == "__main__":
|
50 |
+
demo.launch(server_name="0.0.0.0", server_port=7860)
|