Update app.py
Browse files
app.py
CHANGED
@@ -1,14 +1,15 @@
|
|
1 |
import numpy as np
|
2 |
import torch
|
3 |
import torchvision.transforms as T
|
4 |
-
from decord import VideoReader, cpu
|
5 |
from PIL import Image
|
6 |
from torchvision.transforms.functional import InterpolationMode
|
7 |
from transformers import AutoModel, AutoTokenizer
|
|
|
8 |
|
9 |
IMAGENET_MEAN = (0.485, 0.456, 0.406)
|
10 |
IMAGENET_STD = (0.229, 0.224, 0.225)
|
11 |
|
|
|
12 |
def build_transform(input_size):
|
13 |
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
|
14 |
transform = T.Compose([
|
@@ -19,195 +20,73 @@ def build_transform(input_size):
|
|
19 |
])
|
20 |
return transform
|
21 |
|
22 |
-
|
23 |
-
best_ratio_diff = float('inf')
|
24 |
-
best_ratio = (1, 1)
|
25 |
-
area = width * height
|
26 |
-
for ratio in target_ratios:
|
27 |
-
target_aspect_ratio = ratio[0] / ratio[1]
|
28 |
-
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
|
29 |
-
if ratio_diff < best_ratio_diff:
|
30 |
-
best_ratio_diff = ratio_diff
|
31 |
-
best_ratio = ratio
|
32 |
-
elif ratio_diff == best_ratio_diff:
|
33 |
-
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
|
34 |
-
best_ratio = ratio
|
35 |
-
return best_ratio
|
36 |
-
|
37 |
def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False):
|
38 |
orig_width, orig_height = image.size
|
39 |
aspect_ratio = orig_width / orig_height
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
|
46 |
-
|
47 |
-
# find the closest aspect ratio to the target
|
48 |
-
target_aspect_ratio = find_closest_aspect_ratio(
|
49 |
-
aspect_ratio, target_ratios, orig_width, orig_height, image_size)
|
50 |
-
|
51 |
-
# calculate the target width and height
|
52 |
target_width = image_size * target_aspect_ratio[0]
|
53 |
target_height = image_size * target_aspect_ratio[1]
|
54 |
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
|
55 |
-
|
56 |
-
# resize the image
|
57 |
resized_img = image.resize((target_width, target_height))
|
58 |
-
processed_images = [
|
59 |
-
|
60 |
-
box = (
|
61 |
(i % (target_width // image_size)) * image_size,
|
62 |
(i // (target_width // image_size)) * image_size,
|
63 |
((i % (target_width // image_size)) + 1) * image_size,
|
64 |
((i // (target_width // image_size)) + 1) * image_size
|
65 |
-
)
|
66 |
-
|
67 |
-
|
68 |
-
processed_images.append(split_img)
|
69 |
-
assert len(processed_images) == blocks
|
70 |
if use_thumbnail and len(processed_images) != 1:
|
71 |
thumbnail_img = image.resize((image_size, image_size))
|
72 |
processed_images.append(thumbnail_img)
|
73 |
return processed_images
|
74 |
|
75 |
-
|
76 |
-
|
77 |
transform = build_transform(input_size=input_size)
|
78 |
images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
|
79 |
pixel_values = [transform(image) for image in images]
|
80 |
pixel_values = torch.stack(pixel_values)
|
81 |
return pixel_values
|
82 |
|
83 |
-
#
|
84 |
path = 'OpenGVLab/InternVL2_5-1B'
|
85 |
model = AutoModel.from_pretrained(
|
86 |
path,
|
87 |
torch_dtype=torch.bfloat16,
|
88 |
low_cpu_mem_usage=True,
|
89 |
use_flash_attn=True,
|
90 |
-
trust_remote_code=True
|
91 |
-
|
92 |
-
|
93 |
-
# set the max number of tiles in `max_num`
|
94 |
-
pixel_values = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
|
95 |
-
generation_config = dict(max_new_tokens=1024, do_sample=True)
|
96 |
-
|
97 |
-
# pure-text conversation (纯文本对话)
|
98 |
-
question = 'Hello, who are you?'
|
99 |
-
response, history = model.chat(tokenizer, None, question, generation_config, history=None, return_history=True)
|
100 |
-
print(f'User: {question}\nAssistant: {response}')
|
101 |
-
|
102 |
-
question = 'Can you tell me a story?'
|
103 |
-
response, history = model.chat(tokenizer, None, question, generation_config, history=history, return_history=True)
|
104 |
-
print(f'User: {question}\nAssistant: {response}')
|
105 |
-
|
106 |
-
# single-image single-round conversation (单图单轮对话)
|
107 |
-
question = '<image>\nPlease describe the image shortly.'
|
108 |
-
response = model.chat(tokenizer, pixel_values, question, generation_config)
|
109 |
-
print(f'User: {question}\nAssistant: {response}')
|
110 |
-
|
111 |
-
# single-image multi-round conversation (单图多轮对话)
|
112 |
-
question = '<image>\nPlease describe the image in detail.'
|
113 |
-
response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True)
|
114 |
-
print(f'User: {question}\nAssistant: {response}')
|
115 |
-
|
116 |
-
question = 'Please write a poem according to the image.'
|
117 |
-
response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=history, return_history=True)
|
118 |
-
print(f'User: {question}\nAssistant: {response}')
|
119 |
-
|
120 |
-
# multi-image multi-round conversation, combined images (多图多轮对话,拼接图像)
|
121 |
-
pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
|
122 |
-
pixel_values2 = load_image('./examples/image2.jpg', max_num=12).to(torch.bfloat16).cuda()
|
123 |
-
pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
|
124 |
|
125 |
-
|
126 |
-
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
|
127 |
-
history=None, return_history=True)
|
128 |
-
print(f'User: {question}\nAssistant: {response}')
|
129 |
-
|
130 |
-
question = 'What are the similarities and differences between these two images.'
|
131 |
-
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
|
132 |
-
history=history, return_history=True)
|
133 |
-
print(f'User: {question}\nAssistant: {response}')
|
134 |
-
|
135 |
-
# multi-image multi-round conversation, separate images (多图多轮对话,独立图像)
|
136 |
-
pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
|
137 |
-
pixel_values2 = load_image('./examples/image2.jpg', max_num=12).to(torch.bfloat16).cuda()
|
138 |
-
pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
|
139 |
-
num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)]
|
140 |
-
|
141 |
-
question = 'Image-1: <image>\nImage-2: <image>\nDescribe the two images in detail.'
|
142 |
-
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
|
143 |
-
num_patches_list=num_patches_list,
|
144 |
-
history=None, return_history=True)
|
145 |
-
print(f'User: {question}\nAssistant: {response}')
|
146 |
-
|
147 |
-
question = 'What are the similarities and differences between these two images.'
|
148 |
-
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
|
149 |
-
num_patches_list=num_patches_list,
|
150 |
-
history=history, return_history=True)
|
151 |
-
print(f'User: {question}\nAssistant: {response}')
|
152 |
-
|
153 |
-
# batch inference, single image per sample (单图批处理)
|
154 |
-
pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
|
155 |
-
pixel_values2 = load_image('./examples/image2.jpg', max_num=12).to(torch.bfloat16).cuda()
|
156 |
-
num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)]
|
157 |
-
pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
|
158 |
-
|
159 |
-
questions = ['<image>\nDescribe the image in detail.'] * len(num_patches_list)
|
160 |
-
responses = model.batch_chat(tokenizer, pixel_values,
|
161 |
-
num_patches_list=num_patches_list,
|
162 |
-
questions=questions,
|
163 |
-
generation_config=generation_config)
|
164 |
-
for question, response in zip(questions, responses):
|
165 |
-
print(f'User: {question}\nAssistant: {response}')
|
166 |
-
|
167 |
-
# video multi-round conversation (视频多轮对话)
|
168 |
-
def get_index(bound, fps, max_frame, first_idx=0, num_segments=32):
|
169 |
-
if bound:
|
170 |
-
start, end = bound[0], bound[1]
|
171 |
-
else:
|
172 |
-
start, end = -100000, 100000
|
173 |
-
start_idx = max(first_idx, round(start * fps))
|
174 |
-
end_idx = min(round(end * fps), max_frame)
|
175 |
-
seg_size = float(end_idx - start_idx) / num_segments
|
176 |
-
frame_indices = np.array([
|
177 |
-
int(start_idx + (seg_size / 2) + np.round(seg_size * idx))
|
178 |
-
for idx in range(num_segments)
|
179 |
-
])
|
180 |
-
return frame_indices
|
181 |
-
|
182 |
-
def load_video(video_path, bound=None, input_size=448, max_num=1, num_segments=32):
|
183 |
-
vr = VideoReader(video_path, ctx=cpu(0), num_threads=1)
|
184 |
-
max_frame = len(vr) - 1
|
185 |
-
fps = float(vr.get_avg_fps())
|
186 |
-
|
187 |
-
pixel_values_list, num_patches_list = [], []
|
188 |
-
transform = build_transform(input_size=input_size)
|
189 |
-
frame_indices = get_index(bound, fps, max_frame, first_idx=0, num_segments=num_segments)
|
190 |
-
for frame_index in frame_indices:
|
191 |
-
img = Image.fromarray(vr[frame_index].asnumpy()).convert('RGB')
|
192 |
-
img = dynamic_preprocess(img, image_size=input_size, use_thumbnail=True, max_num=max_num)
|
193 |
-
pixel_values = [transform(tile) for tile in img]
|
194 |
-
pixel_values = torch.stack(pixel_values)
|
195 |
-
num_patches_list.append(pixel_values.shape[0])
|
196 |
-
pixel_values_list.append(pixel_values)
|
197 |
-
pixel_values = torch.cat(pixel_values_list)
|
198 |
-
return pixel_values, num_patches_list
|
199 |
-
|
200 |
-
video_path = './examples/red-panda.mp4'
|
201 |
-
pixel_values, num_patches_list = load_video(video_path, num_segments=8, max_num=1)
|
202 |
-
pixel_values = pixel_values.to(torch.bfloat16).cuda()
|
203 |
-
video_prefix = ''.join([f'Frame{i+1}: <image>\n' for i in range(len(num_patches_list))])
|
204 |
-
question = video_prefix + 'What is the red panda doing?'
|
205 |
-
# Frame1: <image>\nFrame2: <image>\n...\nFrame8: <image>\n{question}
|
206 |
-
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
|
207 |
-
num_patches_list=num_patches_list, history=None, return_history=True)
|
208 |
-
print(f'User: {question}\nAssistant: {response}')
|
209 |
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import numpy as np
|
2 |
import torch
|
3 |
import torchvision.transforms as T
|
|
|
4 |
from PIL import Image
|
5 |
from torchvision.transforms.functional import InterpolationMode
|
6 |
from transformers import AutoModel, AutoTokenizer
|
7 |
+
import gradio as gr
|
8 |
|
9 |
IMAGENET_MEAN = (0.485, 0.456, 0.406)
|
10 |
IMAGENET_STD = (0.229, 0.224, 0.225)
|
11 |
|
12 |
+
# Build the image transform
|
13 |
def build_transform(input_size):
|
14 |
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
|
15 |
transform = T.Compose([
|
|
|
20 |
])
|
21 |
return transform
|
22 |
|
23 |
+
# Dynamic preprocessing
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False):
|
25 |
orig_width, orig_height = image.size
|
26 |
aspect_ratio = orig_width / orig_height
|
27 |
+
target_ratios = sorted(
|
28 |
+
set((i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if i * j <= max_num and i * j >= min_num),
|
29 |
+
key=lambda x: x[0] * x[1]
|
30 |
+
)
|
31 |
+
target_aspect_ratio = target_ratios[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
target_width = image_size * target_aspect_ratio[0]
|
33 |
target_height = image_size * target_aspect_ratio[1]
|
34 |
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
|
|
|
|
|
35 |
resized_img = image.resize((target_width, target_height))
|
36 |
+
processed_images = [
|
37 |
+
resized_img.crop((
|
|
|
38 |
(i % (target_width // image_size)) * image_size,
|
39 |
(i // (target_width // image_size)) * image_size,
|
40 |
((i % (target_width // image_size)) + 1) * image_size,
|
41 |
((i // (target_width // image_size)) + 1) * image_size
|
42 |
+
))
|
43 |
+
for i in range(blocks)
|
44 |
+
]
|
|
|
|
|
45 |
if use_thumbnail and len(processed_images) != 1:
|
46 |
thumbnail_img = image.resize((image_size, image_size))
|
47 |
processed_images.append(thumbnail_img)
|
48 |
return processed_images
|
49 |
|
50 |
+
# Load image dynamically from user upload
|
51 |
+
def load_image(image, input_size=448, max_num=12):
|
52 |
transform = build_transform(input_size=input_size)
|
53 |
images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
|
54 |
pixel_values = [transform(image) for image in images]
|
55 |
pixel_values = torch.stack(pixel_values)
|
56 |
return pixel_values
|
57 |
|
58 |
+
# Load the model and tokenizer
|
59 |
path = 'OpenGVLab/InternVL2_5-1B'
|
60 |
model = AutoModel.from_pretrained(
|
61 |
path,
|
62 |
torch_dtype=torch.bfloat16,
|
63 |
low_cpu_mem_usage=True,
|
64 |
use_flash_attn=True,
|
65 |
+
trust_remote_code=True
|
66 |
+
).eval().cuda()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
+
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
|
70 |
+
# Define the function for Gradio interface
|
71 |
+
def process_image(image):
|
72 |
+
try:
|
73 |
+
pixel_values = load_image(image, max_num=12).to(torch.bfloat16).cuda()
|
74 |
+
generation_config = dict(max_new_tokens=1024, do_sample=True)
|
75 |
+
question = '<image>\nPlease describe the image in detail.'
|
76 |
+
response = model.chat(tokenizer, pixel_values, question, generation_config)
|
77 |
+
return response
|
78 |
+
except Exception as e:
|
79 |
+
return f"Error: {str(e)}"
|
80 |
+
|
81 |
+
# Create Gradio Interface
|
82 |
+
demo = gr.Interface(
|
83 |
+
fn=process_image,
|
84 |
+
inputs=gr.Image(type="pil"),
|
85 |
+
outputs="text",
|
86 |
+
title="Dynamic Image Processing with InternVL",
|
87 |
+
description="Upload an image and get detailed responses using the InternVL model."
|
88 |
+
)
|
89 |
+
|
90 |
+
# Launch the Gradio app
|
91 |
+
if __name__ == "__main__":
|
92 |
+
demo.launch(server_name="0.0.0.0", server_port=7860)
|