Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,22 +1,22 @@
|
|
1 |
import torch
|
2 |
import torchvision.transforms as T
|
3 |
from PIL import Image
|
4 |
-
from
|
5 |
-
from transformers import AutoModel, AutoTokenizer, TextIteratorStreamer
|
6 |
import gradio as gr
|
7 |
import logging
|
8 |
|
9 |
# Setup logging
|
10 |
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
|
11 |
|
|
|
|
|
|
|
12 |
# ImageNet normalization values
|
13 |
IMAGENET_MEAN = (0.485, 0.456, 0.406)
|
14 |
IMAGENET_STD = (0.229, 0.224, 0.225)
|
15 |
|
16 |
def build_transform(input_size):
|
17 |
-
"""
|
18 |
-
Build preprocessing pipeline for images.
|
19 |
-
"""
|
20 |
transform = T.Compose([
|
21 |
T.Lambda(lambda img: img.convert("RGB") if img.mode != "RGB" else img),
|
22 |
T.Resize((input_size, input_size), interpolation=T.InterpolationMode.BICUBIC),
|
@@ -26,79 +26,56 @@ def build_transform(input_size):
|
|
26 |
return transform
|
27 |
|
28 |
def preprocess_image(image, input_size=448):
|
29 |
-
"""
|
30 |
-
Preprocess the image to the required format.
|
31 |
-
"""
|
32 |
-
logging.info("Starting image preprocessing...")
|
33 |
transform = build_transform(input_size)
|
34 |
-
tensor_image = transform(image).unsqueeze(0)
|
35 |
-
logging.info(f"Image preprocessed. Shape: {tensor_image.shape}")
|
36 |
return tensor_image
|
37 |
|
38 |
# Load the model and tokenizer
|
39 |
logging.info("Loading model from Hugging Face Hub...")
|
40 |
-
model_path = "OpenGVLab/InternVL2_5-1B"
|
41 |
model = AutoModel.from_pretrained(
|
42 |
model_path,
|
43 |
-
torch_dtype=torch.bfloat16,
|
44 |
trust_remote_code=True,
|
45 |
-
).eval()
|
46 |
|
47 |
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True, use_fast=False)
|
48 |
|
49 |
# Add the `<image>` token if missing
|
50 |
if "<image>" not in tokenizer.get_vocab():
|
51 |
tokenizer.add_tokens(["<image>"])
|
52 |
-
logging.info("Added `<image>` token to tokenizer vocabulary.")
|
53 |
model.resize_token_embeddings(len(tokenizer)) # Resize model embeddings
|
54 |
|
55 |
assert "<image>" in tokenizer.get_vocab(), "Error: `<image>` token is missing from tokenizer vocabulary."
|
56 |
|
57 |
def describe_image(image):
|
58 |
-
"""
|
59 |
-
Generate a description for the uploaded image with streamed output.
|
60 |
-
"""
|
61 |
try:
|
62 |
-
|
63 |
-
pixel_values = preprocess_image(image, input_size=448).to(torch.bfloat16)
|
64 |
-
|
65 |
prompt = "<image>\nExtract text from the image, respond with only the extracted text."
|
66 |
-
logging.info(f"Prompt: {prompt}")
|
67 |
-
|
68 |
-
# Streamer for live text output
|
69 |
-
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True, timeout=10)
|
70 |
-
generation_config = dict(max_new_tokens=512, do_sample=True, streamer=streamer)
|
71 |
-
|
72 |
-
logging.info("Starting model inference...")
|
73 |
-
thread = Thread(target=model.chat, kwargs=dict(
|
74 |
-
tokenizer=tokenizer, pixel_values=pixel_values, question=prompt,
|
75 |
-
history=None, return_history=False, generation_config=generation_config,
|
76 |
-
))
|
77 |
-
thread.start()
|
78 |
-
|
79 |
-
generated_text = ''
|
80 |
-
for new_text in streamer:
|
81 |
-
if new_text == model.conv_template.sep:
|
82 |
-
break
|
83 |
-
generated_text += new_text
|
84 |
-
yield new_text # Stream each chunk
|
85 |
|
86 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
except Exception as e:
|
88 |
logging.error(f"Error during processing: {e}")
|
89 |
-
|
90 |
|
91 |
# Gradio Interface
|
92 |
-
logging.info("Setting up Gradio interface...")
|
93 |
interface = gr.Interface(
|
94 |
fn=describe_image,
|
95 |
inputs=gr.Image(type="pil"),
|
96 |
outputs=gr.Textbox(label="Extracted Text", lines=10, interactive=False),
|
97 |
title="Image to Text",
|
98 |
description="Upload an image to extract text using the pretrained model.",
|
99 |
-
live=True, # Enables live streaming output
|
100 |
)
|
101 |
|
102 |
if __name__ == "__main__":
|
103 |
-
logging.info("Launching Gradio interface...")
|
104 |
interface.launch(server_name="0.0.0.0", server_port=7860)
|
|
|
1 |
import torch
|
2 |
import torchvision.transforms as T
|
3 |
from PIL import Image
|
4 |
+
from transformers import AutoModel, AutoTokenizer
|
|
|
5 |
import gradio as gr
|
6 |
import logging
|
7 |
|
8 |
# Setup logging
|
9 |
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
|
10 |
|
11 |
+
# Device Configuration
|
12 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
13 |
+
|
14 |
# ImageNet normalization values
|
15 |
IMAGENET_MEAN = (0.485, 0.456, 0.406)
|
16 |
IMAGENET_STD = (0.229, 0.224, 0.225)
|
17 |
|
18 |
def build_transform(input_size):
|
19 |
+
"""Build preprocessing pipeline for images."""
|
|
|
|
|
20 |
transform = T.Compose([
|
21 |
T.Lambda(lambda img: img.convert("RGB") if img.mode != "RGB" else img),
|
22 |
T.Resize((input_size, input_size), interpolation=T.InterpolationMode.BICUBIC),
|
|
|
26 |
return transform
|
27 |
|
28 |
def preprocess_image(image, input_size=448):
|
29 |
+
"""Preprocess the image to the required format."""
|
|
|
|
|
|
|
30 |
transform = build_transform(input_size)
|
31 |
+
tensor_image = transform(image).unsqueeze(0).to(torch.float32 if device == "cpu" else torch.bfloat16).to(device)
|
|
|
32 |
return tensor_image
|
33 |
|
34 |
# Load the model and tokenizer
|
35 |
logging.info("Loading model from Hugging Face Hub...")
|
36 |
+
model_path = "OpenGVLab/InternVL2_5-1B"
|
37 |
model = AutoModel.from_pretrained(
|
38 |
model_path,
|
39 |
+
torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32,
|
40 |
trust_remote_code=True,
|
41 |
+
).to(device).eval()
|
42 |
|
43 |
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True, use_fast=False)
|
44 |
|
45 |
# Add the `<image>` token if missing
|
46 |
if "<image>" not in tokenizer.get_vocab():
|
47 |
tokenizer.add_tokens(["<image>"])
|
|
|
48 |
model.resize_token_embeddings(len(tokenizer)) # Resize model embeddings
|
49 |
|
50 |
assert "<image>" in tokenizer.get_vocab(), "Error: `<image>` token is missing from tokenizer vocabulary."
|
51 |
|
52 |
def describe_image(image):
|
53 |
+
"""Generate a description for the uploaded image."""
|
|
|
|
|
54 |
try:
|
55 |
+
pixel_values = preprocess_image(image, input_size=448)
|
|
|
|
|
56 |
prompt = "<image>\nExtract text from the image, respond with only the extracted text."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
+
response = model.chat(
|
59 |
+
tokenizer=tokenizer,
|
60 |
+
pixel_values=pixel_values,
|
61 |
+
question=prompt,
|
62 |
+
history=None,
|
63 |
+
return_history=False,
|
64 |
+
generation_config=dict(max_new_tokens=512, do_sample=True)
|
65 |
+
)
|
66 |
+
return response
|
67 |
except Exception as e:
|
68 |
logging.error(f"Error during processing: {e}")
|
69 |
+
return f"Error: {e}"
|
70 |
|
71 |
# Gradio Interface
|
|
|
72 |
interface = gr.Interface(
|
73 |
fn=describe_image,
|
74 |
inputs=gr.Image(type="pil"),
|
75 |
outputs=gr.Textbox(label="Extracted Text", lines=10, interactive=False),
|
76 |
title="Image to Text",
|
77 |
description="Upload an image to extract text using the pretrained model.",
|
|
|
78 |
)
|
79 |
|
80 |
if __name__ == "__main__":
|
|
|
81 |
interface.launch(server_name="0.0.0.0", server_port=7860)
|