Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -6,6 +6,9 @@ from PIL import Image
|
|
6 |
from torchvision.transforms.functional import InterpolationMode
|
7 |
from transformers import AutoModel, AutoTokenizer
|
8 |
|
|
|
|
|
|
|
9 |
IMAGENET_MEAN = (0.485, 0.456, 0.406)
|
10 |
IMAGENET_STD = (0.229, 0.224, 0.225)
|
11 |
|
@@ -38,22 +41,18 @@ def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbna
|
|
38 |
orig_width, orig_height = image.size
|
39 |
aspect_ratio = orig_width / orig_height
|
40 |
|
41 |
-
# calculate the existing image aspect ratio
|
42 |
target_ratios = set(
|
43 |
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
|
44 |
i * j <= max_num and i * j >= min_num)
|
45 |
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
|
46 |
|
47 |
-
# find the closest aspect ratio to the target
|
48 |
target_aspect_ratio = find_closest_aspect_ratio(
|
49 |
aspect_ratio, target_ratios, orig_width, orig_height, image_size)
|
50 |
|
51 |
-
# calculate the target width and height
|
52 |
target_width = image_size * target_aspect_ratio[0]
|
53 |
target_height = image_size * target_aspect_ratio[1]
|
54 |
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
|
55 |
|
56 |
-
# resize the image
|
57 |
resized_img = image.resize((target_width, target_height))
|
58 |
processed_images = []
|
59 |
for i in range(blocks):
|
@@ -63,7 +62,6 @@ def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbna
|
|
63 |
((i % (target_width // image_size)) + 1) * image_size,
|
64 |
((i // (target_width // image_size)) + 1) * image_size
|
65 |
)
|
66 |
-
# split the image
|
67 |
split_img = resized_img.crop(box)
|
68 |
processed_images.append(split_img)
|
69 |
assert len(processed_images) == blocks
|
@@ -77,108 +75,9 @@ def load_image(image_file, input_size=448, max_num=12):
|
|
77 |
transform = build_transform(input_size=input_size)
|
78 |
images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
|
79 |
pixel_values = [transform(image) for image in images]
|
80 |
-
pixel_values = torch.stack(pixel_values)
|
81 |
return pixel_values
|
82 |
|
83 |
-
# If you want to load a model using multiple GPUs, please refer to the `Multiple GPUs` section.
|
84 |
-
path = 'OpenGVLab/InternVL2_5-1B'
|
85 |
-
model = AutoModel.from_pretrained(
|
86 |
-
path,
|
87 |
-
torch_dtype=torch.bfloat16,
|
88 |
-
low_cpu_mem_usage=True,
|
89 |
-
use_flash_attn=True,
|
90 |
-
trust_remote_code=True).eval().cuda()
|
91 |
-
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)
|
92 |
-
|
93 |
-
# set the max number of tiles in `max_num`
|
94 |
-
pixel_values = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
|
95 |
-
generation_config = dict(max_new_tokens=1024, do_sample=True)
|
96 |
-
|
97 |
-
# pure-text conversation (纯文本对话)
|
98 |
-
question = 'Hello, who are you?'
|
99 |
-
response, history = model.chat(tokenizer, None, question, generation_config, history=None, return_history=True)
|
100 |
-
print(f'User: {question}\nAssistant: {response}')
|
101 |
-
|
102 |
-
question = 'Can you tell me a story?'
|
103 |
-
response, history = model.chat(tokenizer, None, question, generation_config, history=history, return_history=True)
|
104 |
-
print(f'User: {question}\nAssistant: {response}')
|
105 |
-
|
106 |
-
# single-image single-round conversation (单图单轮对话)
|
107 |
-
question = '<image>\nPlease describe the image shortly.'
|
108 |
-
response = model.chat(tokenizer, pixel_values, question, generation_config)
|
109 |
-
print(f'User: {question}\nAssistant: {response}')
|
110 |
-
|
111 |
-
# single-image multi-round conversation (单图多轮对话)
|
112 |
-
question = '<image>\nPlease describe the image in detail.'
|
113 |
-
response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True)
|
114 |
-
print(f'User: {question}\nAssistant: {response}')
|
115 |
-
|
116 |
-
question = 'Please write a poem according to the image.'
|
117 |
-
response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=history, return_history=True)
|
118 |
-
print(f'User: {question}\nAssistant: {response}')
|
119 |
-
|
120 |
-
# multi-image multi-round conversation, combined images (多图多轮对话,拼接图像)
|
121 |
-
pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
|
122 |
-
pixel_values2 = load_image('./examples/image2.jpg', max_num=12).to(torch.bfloat16).cuda()
|
123 |
-
pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
|
124 |
-
|
125 |
-
question = '<image>\nDescribe the two images in detail.'
|
126 |
-
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
|
127 |
-
history=None, return_history=True)
|
128 |
-
print(f'User: {question}\nAssistant: {response}')
|
129 |
-
|
130 |
-
question = 'What are the similarities and differences between these two images.'
|
131 |
-
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
|
132 |
-
history=history, return_history=True)
|
133 |
-
print(f'User: {question}\nAssistant: {response}')
|
134 |
-
|
135 |
-
# multi-image multi-round conversation, separate images (多图多轮对话,独立图像)
|
136 |
-
pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
|
137 |
-
pixel_values2 = load_image('./examples/image2.jpg', max_num=12).to(torch.bfloat16).cuda()
|
138 |
-
pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
|
139 |
-
num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)]
|
140 |
-
|
141 |
-
question = 'Image-1: <image>\nImage-2: <image>\nDescribe the two images in detail.'
|
142 |
-
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
|
143 |
-
num_patches_list=num_patches_list,
|
144 |
-
history=None, return_history=True)
|
145 |
-
print(f'User: {question}\nAssistant: {response}')
|
146 |
-
|
147 |
-
question = 'What are the similarities and differences between these two images.'
|
148 |
-
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
|
149 |
-
num_patches_list=num_patches_list,
|
150 |
-
history=history, return_history=True)
|
151 |
-
print(f'User: {question}\nAssistant: {response}')
|
152 |
-
|
153 |
-
# batch inference, single image per sample (单图批处理)
|
154 |
-
pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
|
155 |
-
pixel_values2 = load_image('./examples/image2.jpg', max_num=12).to(torch.bfloat16).cuda()
|
156 |
-
num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)]
|
157 |
-
pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
|
158 |
-
|
159 |
-
questions = ['<image>\nDescribe the image in detail.'] * len(num_patches_list)
|
160 |
-
responses = model.batch_chat(tokenizer, pixel_values,
|
161 |
-
num_patches_list=num_patches_list,
|
162 |
-
questions=questions,
|
163 |
-
generation_config=generation_config)
|
164 |
-
for question, response in zip(questions, responses):
|
165 |
-
print(f'User: {question}\nAssistant: {response}')
|
166 |
-
|
167 |
-
# video multi-round conversation (视频多轮对话)
|
168 |
-
def get_index(bound, fps, max_frame, first_idx=0, num_segments=32):
|
169 |
-
if bound:
|
170 |
-
start, end = bound[0], bound[1]
|
171 |
-
else:
|
172 |
-
start, end = -100000, 100000
|
173 |
-
start_idx = max(first_idx, round(start * fps))
|
174 |
-
end_idx = min(round(end * fps), max_frame)
|
175 |
-
seg_size = float(end_idx - start_idx) / num_segments
|
176 |
-
frame_indices = np.array([
|
177 |
-
int(start_idx + (seg_size / 2) + np.round(seg_size * idx))
|
178 |
-
for idx in range(num_segments)
|
179 |
-
])
|
180 |
-
return frame_indices
|
181 |
-
|
182 |
def load_video(video_path, bound=None, input_size=448, max_num=1, num_segments=32):
|
183 |
vr = VideoReader(video_path, ctx=cpu(0), num_threads=1)
|
184 |
max_frame = len(vr) - 1
|
@@ -197,17 +96,26 @@ def load_video(video_path, bound=None, input_size=448, max_num=1, num_segments=3
|
|
197 |
pixel_values = torch.cat(pixel_values_list)
|
198 |
return pixel_values, num_patches_list
|
199 |
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
|
|
|
|
|
|
|
|
209 |
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
|
|
|
|
|
|
|
|
|
|
|
6 |
from torchvision.transforms.functional import InterpolationMode
|
7 |
from transformers import AutoModel, AutoTokenizer
|
8 |
|
9 |
+
# Device Configuration
|
10 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
11 |
+
|
12 |
IMAGENET_MEAN = (0.485, 0.456, 0.406)
|
13 |
IMAGENET_STD = (0.229, 0.224, 0.225)
|
14 |
|
|
|
41 |
orig_width, orig_height = image.size
|
42 |
aspect_ratio = orig_width / orig_height
|
43 |
|
|
|
44 |
target_ratios = set(
|
45 |
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
|
46 |
i * j <= max_num and i * j >= min_num)
|
47 |
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
|
48 |
|
|
|
49 |
target_aspect_ratio = find_closest_aspect_ratio(
|
50 |
aspect_ratio, target_ratios, orig_width, orig_height, image_size)
|
51 |
|
|
|
52 |
target_width = image_size * target_aspect_ratio[0]
|
53 |
target_height = image_size * target_aspect_ratio[1]
|
54 |
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
|
55 |
|
|
|
56 |
resized_img = image.resize((target_width, target_height))
|
57 |
processed_images = []
|
58 |
for i in range(blocks):
|
|
|
62 |
((i % (target_width // image_size)) + 1) * image_size,
|
63 |
((i // (target_width // image_size)) + 1) * image_size
|
64 |
)
|
|
|
65 |
split_img = resized_img.crop(box)
|
66 |
processed_images.append(split_img)
|
67 |
assert len(processed_images) == blocks
|
|
|
75 |
transform = build_transform(input_size=input_size)
|
76 |
images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
|
77 |
pixel_values = [transform(image) for image in images]
|
78 |
+
pixel_values = torch.stack(pixel_values).to(device)
|
79 |
return pixel_values
|
80 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
def load_video(video_path, bound=None, input_size=448, max_num=1, num_segments=32):
|
82 |
vr = VideoReader(video_path, ctx=cpu(0), num_threads=1)
|
83 |
max_frame = len(vr) - 1
|
|
|
96 |
pixel_values = torch.cat(pixel_values_list)
|
97 |
return pixel_values, num_patches_list
|
98 |
|
99 |
+
def get_index(bound, fps, max_frame, first_idx=0, num_segments=32):
|
100 |
+
if bound:
|
101 |
+
start, end = bound[0], bound[1]
|
102 |
+
else:
|
103 |
+
start, end = -100000, 100000
|
104 |
+
start_idx = max(first_idx, round(start * fps))
|
105 |
+
end_idx = min(round(end * fps), max_frame)
|
106 |
+
seg_size = float(end_idx - start_idx) / num_segments
|
107 |
+
frame_indices = np.array([
|
108 |
+
int(start_idx + (seg_size / 2) + np.round(seg_size * idx))
|
109 |
+
for idx in range(num_segments)
|
110 |
+
])
|
111 |
+
return frame_indices
|
112 |
|
113 |
+
# Load Model
|
114 |
+
path = 'OpenGVLab/InternVL2_5-1B'
|
115 |
+
model = AutoModel.from_pretrained(
|
116 |
+
path,
|
117 |
+
low_cpu_mem_usage=True,
|
118 |
+
use_flash_attn=False,
|
119 |
+
trust_remote_code=True
|
120 |
+
).eval().to(device)
|
121 |
+
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)
|