import torch from PIL import Image from transformers import AutoModel, CLIPImageProcessor import gradio as gr # Load the model model = AutoModel.from_pretrained( 'OpenGVLab/InternViT-6B-448px-V1-5', torch_dtype=torch.bfloat16, low_cpu_mem_usage=True, trust_remote_code=True, use_flash_attn=False # Disable Flash Attention ).cuda().eval() # Load the image processor image_processor = CLIPImageProcessor.from_pretrained('OpenGVLab/InternViT-6B-448px-V1-5') # Define the function to process the image and generate outputs def process_image(image): try: # Convert uploaded image to RGB image = image.convert('RGB') # Preprocess the image pixel_values = image_processor(images=image, return_tensors='pt').pixel_values pixel_values = pixel_values.to(torch.bfloat16).cuda() # Run the model outputs = model(pixel_values) # Assuming the model returns embeddings or features return f"Output Shape: {outputs.last_hidden_state.shape}" except Exception as e: return f"Error: {str(e)}" # Create the Gradio interface demo = gr.Interface( fn=process_image, # Function to process the input inputs=gr.Image(type="pil"), # Accepts images as input outputs=gr.Textbox(label="Model Output"), # Displays model output title="InternViT Demo", description="Upload an image to process it using the InternViT model from OpenGVLab." ) # Launch the demo if __name__ == "__main__": demo.launch(server_name="0.0.0.0", server_port=7860)