File size: 1,078 Bytes
af9251e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
from langchain.embeddings.huggingface import HuggingFaceEmbeddings

from typing import Any, List


class MyEmbeddings(HuggingFaceEmbeddings):
    def __init__(self, **kwargs: Any):
        super().__init__(**kwargs)
        
    def embed_documents(self, texts: List[str]) -> List[List[float]]:
        """Compute doc embeddings using a HuggingFace transformer model.

        Args:
            texts: The list of texts to embed.

        Returns:
            List of embeddings, one for each text.
        """
        texts = list(map(lambda x: x.replace("\n", " "), texts))
        embeddings = self.client.encode(texts, normalize_embeddings=True)
        return embeddings.tolist()

    def embed_query(self, text: str) -> List[float]:
        """Compute query embeddings using a HuggingFace transformer model.

        Args:
            text: The text to embed.

        Returns:
            Embeddings for the text.
        """
        text = text.replace("\n", " ")
        embedding = self.client.encode(text, normalize_embeddings=True)
        return embedding.tolist()