ChatGLM / models /loader /loader.py
y001j's picture
Upload 305 files
af9251e
import gc
import json
import os
import re
import time
from pathlib import Path
from typing import Optional, List, Dict, Tuple, Union
import torch
import transformers
from transformers import (AutoConfig, AutoModel, AutoModelForCausalLM,
AutoTokenizer, LlamaTokenizer)
from configs.model_config import LLM_DEVICE
class LoaderCheckPoint:
"""
加载自定义 model CheckPoint
"""
# remote in the model on loader checkpoint
no_remote_model: bool = False
# 模型名称
model_name: str = None
tokenizer: object = None
# 模型全路径
model_path: str = None
model: object = None
model_config: object = None
lora_names: set = []
lora_dir: str = None
ptuning_dir: str = None
use_ptuning_v2: bool = False
# 如果开启了8bit量化加载,项目无法启动,参考此位置,选择合适的cuda版本,https://github.com/TimDettmers/bitsandbytes/issues/156
# 另一个原因可能是由于bitsandbytes安装时选择了系统环境变量里不匹配的cuda版本,
# 例如PATH下存在cuda10.2和cuda11.2,bitsandbytes安装时选择了10.2,而torch等安装依赖的版本是11.2
# 因此主要的解决思路是清理环境变量里PATH下的不匹配的cuda版本,一劳永逸的方法是:
# 0. 在终端执行`pip uninstall bitsandbytes`
# 1. 删除.bashrc文件下关于PATH的条目
# 2. 在终端执行 `echo $PATH >> .bashrc`
# 3. 删除.bashrc文件下PATH中关于不匹配的cuda版本路径
# 4. 在终端执行`source .bashrc`
# 5. 再执行`pip install bitsandbytes`
load_in_8bit: bool = False
is_llamacpp: bool = False
bf16: bool = False
params: object = None
# 自定义设备网络
device_map: Optional[Dict[str, int]] = None
# 默认 cuda ,如果不支持cuda使用多卡, 如果不支持多卡 使用cpu
llm_device = LLM_DEVICE
def __init__(self, params: dict = None):
"""
模型初始化
:param params:
"""
self.model = None
self.tokenizer = None
self.params = params or {}
self.model_name = params.get('model_name', False)
self.model_path = params.get('model_path', None)
self.no_remote_model = params.get('no_remote_model', False)
self.lora = params.get('lora', '')
self.use_ptuning_v2 = params.get('use_ptuning_v2', False)
self.lora_dir = params.get('lora_dir', '')
self.ptuning_dir = params.get('ptuning_dir', 'ptuning-v2')
self.load_in_8bit = params.get('load_in_8bit', False)
self.bf16 = params.get('bf16', False)
def _load_model_config(self, model_name):
if self.model_path:
checkpoint = Path(f'{self.model_path}')
else:
if not self.no_remote_model:
checkpoint = model_name
else:
raise ValueError(
"本地模型local_model_path未配置路径"
)
model_config = AutoConfig.from_pretrained(checkpoint, trust_remote_code=True)
return model_config
def _load_model(self, model_name):
"""
加载自定义位置的model
:param model_name:
:return:
"""
print(f"Loading {model_name}...")
t0 = time.time()
if self.model_path:
checkpoint = Path(f'{self.model_path}')
else:
if not self.no_remote_model:
checkpoint = model_name
else:
raise ValueError(
"本地模型local_model_path未配置路径"
)
self.is_llamacpp = len(list(Path(f'{checkpoint}').glob('ggml*.bin'))) > 0
if 'chatglm' in model_name.lower():
LoaderClass = AutoModel
else:
LoaderClass = AutoModelForCausalLM
# Load the model in simple 16-bit mode by default
# 如果加载没问题,但在推理时报错RuntimeError: CUDA error: CUBLAS_STATUS_ALLOC_FAILED when calling `cublasCreate(handle)`
# 那还是因为显存不够,此时只能考虑--load-in-8bit,或者配置默认模型为`chatglm-6b-int8`
if not any([self.llm_device.lower() == "cpu",
self.load_in_8bit, self.is_llamacpp]):
if torch.cuda.is_available() and self.llm_device.lower().startswith("cuda"):
# 根据当前设备GPU数量决定是否进行多卡部署
num_gpus = torch.cuda.device_count()
print(f"num_gpus: {num_gpus}")
if num_gpus < 2 and self.device_map is None:
model = (
LoaderClass.from_pretrained(checkpoint,
config=self.model_config,
torch_dtype=torch.bfloat16 if self.bf16 else torch.float16,
trust_remote_code=True)
.half()
.cuda()
)
else:
from accelerate import dispatch_model
model = LoaderClass.from_pretrained(checkpoint,
config=self.model_config,
torch_dtype=torch.bfloat16 if self.bf16 else torch.float16,
trust_remote_code=True).half()
# 可传入device_map自定义每张卡的部署情况
if self.device_map is None:
if 'chatglm' in model_name.lower():
self.device_map = self.chatglm_auto_configure_device_map(num_gpus)
elif 'moss' in model_name.lower():
self.device_map = self.moss_auto_configure_device_map(num_gpus, model_name)
else:
self.device_map = self.chatglm_auto_configure_device_map(num_gpus)
model = dispatch_model(model, device_map=self.device_map)
else:
model = (
LoaderClass.from_pretrained(
checkpoint,
config=self.model_config,
trust_remote_code=True)
.float()
.to(self.llm_device)
)
elif self.is_llamacpp:
try:
from models.extensions.llamacpp_model_alternative import LlamaCppModel
except ImportError as exc:
raise ValueError(
"Could not import depend python package "
"Please install it with `pip install llama-cpp-python`."
) from exc
model_file = list(checkpoint.glob('ggml*.bin'))[0]
print(f"llama.cpp weights detected: {model_file}\n")
model, tokenizer = LlamaCppModel.from_pretrained(model_file)
return model, tokenizer
elif self.load_in_8bit:
try:
from accelerate import init_empty_weights
from accelerate.utils import get_balanced_memory, infer_auto_device_map
from transformers import BitsAndBytesConfig
except ImportError as exc:
raise ValueError(
"Could not import depend python package "
"Please install it with `pip install transformers` "
"`pip install bitsandbytes``pip install accelerate`."
) from exc
params = {"low_cpu_mem_usage": True}
if not self.llm_device.lower().startswith("cuda"):
raise SystemError("8bit 模型需要 CUDA 支持,或者改用量化后模型!")
else:
params["device_map"] = 'auto'
params["trust_remote_code"] = True
params['quantization_config'] = BitsAndBytesConfig(load_in_8bit=True,
llm_int8_enable_fp32_cpu_offload=False)
with init_empty_weights():
model = LoaderClass.from_config(self.model_config,trust_remote_code = True)
model.tie_weights()
if self.device_map is not None:
params['device_map'] = self.device_map
else:
params['device_map'] = infer_auto_device_map(
model,
dtype=torch.int8,
no_split_module_classes=model._no_split_modules
)
try:
model = LoaderClass.from_pretrained(checkpoint, **params)
except ImportError as exc:
raise ValueError(
"如果开启了8bit量化加载,项目无法启动,参考此位置,选择合适的cuda版本,https://github.com/TimDettmers/bitsandbytes/issues/156"
) from exc
# Custom
else:
print(
"Warning: self.llm_device is False.\nThis means that no use GPU bring to be load CPU mode\n")
params = {"low_cpu_mem_usage": True, "torch_dtype": torch.float32, "trust_remote_code": True}
model = LoaderClass.from_pretrained(checkpoint, **params).to(self.llm_device, dtype=float)
# Loading the tokenizer
if type(model) is transformers.LlamaForCausalLM:
tokenizer = LlamaTokenizer.from_pretrained(checkpoint, clean_up_tokenization_spaces=True)
# Leaving this here until the LLaMA tokenizer gets figured out.
# For some people this fixes things, for others it causes an error.
try:
tokenizer.eos_token_id = 2
tokenizer.bos_token_id = 1
tokenizer.pad_token_id = 0
except Exception as e:
print(e)
pass
else:
tokenizer = AutoTokenizer.from_pretrained(checkpoint, trust_remote_code=True)
print(f"Loaded the model in {(time.time() - t0):.2f} seconds.")
return model, tokenizer
def chatglm_auto_configure_device_map(self, num_gpus: int) -> Dict[str, int]:
# transformer.word_embeddings 占用1层
# transformer.final_layernorm 和 lm_head 占用1层
# transformer.layers 占用 28 层
# 总共30层分配到num_gpus张卡上
num_trans_layers = 28
per_gpu_layers = 30 / num_gpus
# bugfix: PEFT加载lora模型出现的层命名不同
if self.lora:
layer_prefix = 'base_model.model.transformer'
else:
layer_prefix = 'transformer'
# bugfix: 在linux中调用torch.embedding传入的weight,input不在同一device上,导致RuntimeError
# windows下 model.device 会被设置成 transformer.word_embeddings.device
# linux下 model.device 会被设置成 lm_head.device
# 在调用chat或者stream_chat时,input_ids会被放到model.device上
# 如果transformer.word_embeddings.device和model.device不同,则会导致RuntimeError
# 因此这里将transformer.word_embeddings,transformer.final_layernorm,lm_head都放到第一张卡上
device_map = {f'{layer_prefix}.word_embeddings': 0,
f'{layer_prefix}.final_layernorm': 0, 'lm_head': 0,
f'base_model.model.lm_head': 0, }
used = 2
gpu_target = 0
for i in range(num_trans_layers):
if used >= per_gpu_layers:
gpu_target += 1
used = 0
assert gpu_target < num_gpus
device_map[f'{layer_prefix}.layers.{i}'] = gpu_target
used += 1
return device_map
def moss_auto_configure_device_map(self, num_gpus: int, model_name) -> Dict[str, int]:
try:
from accelerate import init_empty_weights
from accelerate.utils import get_balanced_memory, infer_auto_device_map
from transformers.dynamic_module_utils import get_class_from_dynamic_module
from transformers.modeling_utils import no_init_weights
from transformers.utils import ContextManagers
except ImportError as exc:
raise ValueError(
"Could not import depend python package "
"Please install it with `pip install transformers` "
"`pip install bitsandbytes``pip install accelerate`."
) from exc
if self.model_path:
checkpoint = Path(f'{self.model_path}')
else:
if not self.no_remote_model:
checkpoint = model_name
else:
raise ValueError(
"本地模型local_model_path未配置路径"
)
cls = get_class_from_dynamic_module(class_reference="fnlp/moss-moon-003-sft--modeling_moss.MossForCausalLM",
pretrained_model_name_or_path=checkpoint)
with ContextManagers([no_init_weights(_enable=True), init_empty_weights()]):
model = cls(self.model_config)
max_memory = get_balanced_memory(model, dtype=torch.int8 if self.load_in_8bit else None,
low_zero=False, no_split_module_classes=model._no_split_modules)
device_map = infer_auto_device_map(
model, dtype=torch.float16 if not self.load_in_8bit else torch.int8, max_memory=max_memory,
no_split_module_classes=model._no_split_modules)
device_map["transformer.wte"] = 0
device_map["transformer.drop"] = 0
device_map["transformer.ln_f"] = 0
device_map["lm_head"] = 0
return device_map
def _add_lora_to_model(self, lora_names):
try:
from peft import PeftModel
except ImportError as exc:
raise ValueError(
"Could not import depend python package. "
"Please install it with `pip install peft``pip install accelerate`."
) from exc
# 目前加载的lora
prior_set = set(self.lora_names)
# 需要加载的
added_set = set(lora_names) - prior_set
# 删除的lora
removed_set = prior_set - set(lora_names)
self.lora_names = list(lora_names)
# Nothing to do = skip.
if len(added_set) == 0 and len(removed_set) == 0:
return
# Only adding, and already peft? Do it the easy way.
if len(removed_set) == 0 and len(prior_set) > 0:
print(f"Adding the LoRA(s) named {added_set} to the model...")
for lora in added_set:
self.model.load_adapter(Path(f"{self.lora_dir}/{lora}"), lora)
return
# If removing anything, disable all and re-add.
if len(removed_set) > 0:
self.model.disable_adapter()
if len(lora_names) > 0:
print("Applying the following LoRAs to {}: {}".format(self.model_name, ', '.join(lora_names)))
params = {}
if self.llm_device.lower() != "cpu":
params['dtype'] = self.model.dtype
if hasattr(self.model, "hf_device_map"):
params['device_map'] = {"base_model.model." + k: v for k, v in self.model.hf_device_map.items()}
elif self.load_in_8bit:
params['device_map'] = {'': 0}
self.model.resize_token_embeddings(len(self.tokenizer))
self.model = PeftModel.from_pretrained(self.model, Path(f"{self.lora_dir}/{lora_names[0]}"), **params)
for lora in lora_names[1:]:
self.model.load_adapter(Path(f"{self.lora_dir}/{lora}"), lora)
if not self.load_in_8bit and self.llm_device.lower() != "cpu":
if not hasattr(self.model, "hf_device_map"):
if torch.has_mps:
device = torch.device('mps')
self.model = self.model.to(device)
else:
self.model = self.model.cuda()
def clear_torch_cache(self):
gc.collect()
if self.llm_device.lower() != "cpu":
if torch.has_mps:
try:
from torch.mps import empty_cache
empty_cache()
except Exception as e:
print(e)
print(
"如果您使用的是 macOS 建议将 pytorch 版本升级至 2.0.0 或更高版本,以支持及时清理 torch 产生的内存占用。")
elif torch.has_cuda:
device_id = "0" if torch.cuda.is_available() else None
CUDA_DEVICE = f"{self.llm_device}:{device_id}" if device_id else self.llm_device
with torch.cuda.device(CUDA_DEVICE):
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
else:
print("未检测到 cuda 或 mps,暂不支持清理显存")
def unload_model(self):
del self.model
del self.tokenizer
self.model = self.tokenizer = None
self.clear_torch_cache()
def set_model_path(self, model_path):
self.model_path = model_path
def reload_model(self):
self.unload_model()
self.model_config = self._load_model_config(self.model_name)
if self.use_ptuning_v2:
try:
prefix_encoder_file = open(Path(f'{self.ptuning_dir}/config.json'), 'r')
prefix_encoder_config = json.loads(prefix_encoder_file.read())
prefix_encoder_file.close()
self.model_config.pre_seq_len = prefix_encoder_config['pre_seq_len']
self.model_config.prefix_projection = prefix_encoder_config['prefix_projection']
except Exception as e:
print("加载PrefixEncoder config.json失败")
self.model, self.tokenizer = self._load_model(self.model_name)
if self.lora:
self._add_lora_to_model([self.lora])
if self.use_ptuning_v2:
try:
prefix_state_dict = torch.load(Path(f'{self.ptuning_dir}/pytorch_model.bin'))
new_prefix_state_dict = {}
for k, v in prefix_state_dict.items():
if k.startswith("transformer.prefix_encoder."):
new_prefix_state_dict[k[len("transformer.prefix_encoder."):]] = v
self.model.transformer.prefix_encoder.load_state_dict(new_prefix_state_dict)
self.model.transformer.prefix_encoder.float()
except Exception as e:
print("加载PrefixEncoder模型参数失败")
self.model = self.model.eval()