ya02 commited on
Commit
020df6e
·
verified ·
1 Parent(s): db90ddc

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +67 -52
app.py CHANGED
@@ -1,63 +1,78 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
 
 
 
 
 
 
 
 
 
3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
 
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
 
26
- messages.append({"role": "user", "content": message})
 
 
27
 
28
- response = ""
 
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
 
39
- response += token
40
- yield response
 
 
 
 
 
 
 
41
 
42
- """
43
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
44
- """
45
- demo = gr.ChatInterface(
46
- respond,
47
- additional_inputs=[
48
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
49
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
50
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
51
- gr.Slider(
52
- minimum=0.1,
53
- maximum=1.0,
54
- value=0.95,
55
- step=0.05,
56
- label="Top-p (nucleus sampling)",
57
- ),
58
- ],
59
- )
60
-
61
-
62
- if __name__ == "__main__":
63
- demo.launch()
 
1
  import gradio as gr
2
+ import chainlit as cl
3
+ from langchain_openai import ChatOpenAI
4
+ from langchain_community.embeddings import HuggingFaceEmbeddings
5
+ from langchain.text_splitter import RecursiveCharacterTextSplitter
6
+ from langchain_community.vectorstores import Chroma
7
+ from langchain_community.document_loaders import PyPDFLoader
8
+ from langchain.chains import ConversationalRetrievalChain
9
+ from langchain_community.chat_message_histories import ChatMessageHistory
10
+ from langchain.memory import ConversationBufferMemory
11
+ from langchain_core.prompts import PromptTemplate
12
 
13
+ # Your API key
14
+ open_ai_key = "sk-proj-DQPYy7NQXLkgtJDLzrijT3BlbkFJuPuWnU33xKyKxgLQauKO"
15
+
16
+ llm = ChatOpenAI(api_key=open_ai_key)
17
+
18
+ template = """Use the following pieces of information to answer the user's question.
19
+ If you don't know the answer, just say that you don't know, don't try to make up an answer.
20
+
21
+ Context: {context}
22
+ Question: {question}
23
+
24
+ Only return the helpful answer below and nothing else.
25
+ Helpful answer:
26
  """
 
 
 
27
 
28
+ prompt = PromptTemplate(template=template, input_variables=["context", "question"])
29
 
30
+ def process_pdf_and_ask_question(pdf_file, question):
31
+ # Load and process the PDF
32
+ loader = PyPDFLoader(pdf_file.name)
33
+ pdf_data = loader.load()
 
 
 
 
 
34
 
35
+ # Split the text into chunks
36
+ text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
37
+ docs = text_splitter.split_documents(pdf_data)
 
 
38
 
39
+ # Create a Chroma vector store
40
+ embeddings = HuggingFaceEmbeddings(model_name="embaas/sentence-transformers-multilingual-e5-base")
41
+ db = Chroma.from_documents(docs, embeddings)
42
 
43
+ # Initialize message history for conversation
44
+ message_history = ChatMessageHistory()
45
 
46
+ # Memory for conversational context
47
+ memory = ConversationBufferMemory(
48
+ memory_key="chat_history",
49
+ output_key="answer",
50
+ chat_memory=message_history,
51
+ return_messages=True,
52
+ )
 
53
 
54
+ # Create a chain that uses the Chroma vector store
55
+ chain = ConversationalRetrievalChain.from_llm(
56
+ llm=llm,
57
+ chain_type="stuff",
58
+ retriever=db.as_retriever(),
59
+ memory=memory,
60
+ return_source_documents=False,
61
+ combine_docs_chain_kwargs={'prompt': prompt}
62
+ )
63
 
64
+ # Process the question
65
+ res = chain({"input": question})
66
+ return res["answer"]
67
+
68
+ def gradio_interface(pdf, question):
69
+ return process_pdf_and_ask_question(pdf, question)
70
+
71
+ # Gradio interface
72
+ gr.Interface(
73
+ fn=gradio_interface,
74
+ inputs=[gr.inputs.File(file_count="single", type="file"), gr.inputs.Textbox(lines=2, placeholder="Ask a question...")],
75
+ outputs="text",
76
+ title="PDF Q&A",
77
+ description="Upload a PDF and ask questions about it.",
78
+ ).launch()